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Abstract

Numerical simulations of con�ned supersonic shear layers have been conducted using

advanced massively parallel computing systems and a high performance scienti�c program�

ming language� The fundamental capability sought was the ability to model the steady

and unsteady behavior of con�ned compressible shear layer mixing� at least to within the

conventional guidelines for the resolution of important physical phenomena� The overall

objective was fully achieved�

The development of the software was accomplished on a combination of a CM��		a

situated at Penn State� the Numerical Aerodynamic Simulation Program
s CM�� at NASA

Ames� and the National Center for Supercomputing Application
s CM�� at the University

of Illinois at Urbana�Champaign� A system speci�c version of High Performance Fortran�

CM Fortran� was used to code the software� The Euler equations were integrated with the

MacCormack ��� numerical scheme applied over a Cartesian grid� Several new develop�

ments such as a modi�ed Jameson Arti�cial Viscosity scheme� a new spatial extrapolation

scheme� and new unsteady inlet boundary conditions� resulted in excellent comparison with

experimental data� The supersonic shear layers were simulated using dense grids to provide

a �ne�grain resolution of the mixing layer� Grid densities were chosen to resolve the funda�

mental Kelvin�Helmholtz instability mode and the very thin shear layer near the inlet� The

�ne grain solutions utilize approximately �		�			 grid points in the ��D cases and ����	�			

grid points in the �D case�

Two compressible mixing layers were simulated and compared to experimental data

collected under a separate e�ort� Similarly� single frequency excitation simulations were

made to provide comparisons with linear stability theory� Both shear layers have moderate

Reynolds numbers �Rey�� � of ��		 and ��		� and have convective Mach numbers of 	��

and 	���� respectively� Excellent agreement between the two�dimensional simulation and

experimental results were obtained for the mean velocity pro�les� FFT spectra� shear layer

growth rate� momentum �uctuation quantities and the Reynolds stresses� Examination

of instantaneous and time�averaged �eld variables provided informative insight into� shear

layer growth rate behavior� double peaked turbulence intensity pro�les that are commonly
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observed in experimental data� and shear layer excitation by standing Mach waves re�ected

from the con�ning channel walls�
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Chapter �

Introduction

��� Objectives and Overview

Compressible mixing layers have been a research topic with engineering and research

importance for many years� They occur in a very broad spectrum of applications from

the external aerodynamics of aircraft to the intense �ow conditions of internal �ows in

propulsion and laser systems� During the last decade the oft cited application of shear layer

research has been supersonic combustion�propulsion associated with scramjet missiles or

vehicles such as the single�stage�to�orbit Aerospace Plane or the High Speed Civil Transport�

Improvement of these systems is needed not only to reduce their size� cost and make them

more e�cient� but also to make them quieter� Achieving these improvements requires a

better understanding of the basic mixing processes occurring in shear layers and that better

understanding requires signi�cant increases in the amount and resolution of fundamental

�ow variable data from within the shear layer� Numerical simulation of engineering problems

is an emerging technology that holds great promise to provide the needed data�

The advancements in computing power of recent years are providing signi�cant im�

provement in the ability of computational methods to provide �ne grain solutions to en�

gineering problems such as shear layer mixing mechanisms� Simulations provide a wealth

of informational detail that is often di�cult to obtain from contemporary experimental

methods� As memory and visual data post�processing capabilities improve� simulations will

provide greater detail to the researcher than can be practically collected from experiments�

However� experimental methods provide the physical reality needed to validate and evaluate

the computational methods�

This thesis is a computational part of ongoing research �Hackett ���� Kinzie ����

Kamvissis ����� Martens ���� ���� at the Pennsylvania State University into the mixing

of supersonic shear layers with convective Mach numbers in the low to moderate range�

The focus of the present research has been the development of two� and three�dimensional



�

Euler software for the analysis of compressible mixing� The fundamental capability sought

is the ability to model the steady and unsteady behavior of con�ned compressible shear

layer mixing� at least to within the conventional guidelines for the resolution of important

physical phenomena� such as �	 points per wave length�

The development of the software was accomplished on a CM��		a at Penn State� the

Numerical Aerodynamic Simulation Program
s CM�� at NASA Ames� and the National

Center for Supercomputing Application
s CM�� at the University of Illinois at Urbana�

Champaign� The approach is guided by three principles� consistency with experimental

data� consistency with analysis� and applicability to �ow ranges of engineering interest�

While comparisons between analytical and numerical results or experimental and numerical

results are common practice� a growing number of researchers such as Mankbadi et al� ��	�

and Hayder ���� are including explicitly consistent comparisons between computational re�

sults and analysis� This consistency between computations� experiments and analysis relies

on a common problem de�nition and the availability of resulting data� This thesis brings

together numerical simulations� measurements by Martens
 ����� and analytical results from

Lockard ����� all for a common problem de�nition� The combination of experimental data�

analytic stability information� and computational capability for a common set of �ow con�

ditions is improving our understanding of compressible shear layers�

��� Background

Research into the behavior of both incompressible and compressible mixing layers

has spanned analytical� experimental and numerical e�orts� Each type of research has

contributed essential understanding to the knowledge base� Analytical methods of stability

theory have given understanding of the basic character of the perturbations� Experimental

e�orts have quanti�ed the basic mean and perturbation behaviors� Numerical methods

have begun to provide close comparison with both analytical and experimental results�

This opens a new way of study of mixing layers that can provide new information that is

di�cult or impossible to obtain by other means� Key papers that have contributed directly

to this thesis topic are discussed below�

The early linear stability studies of compressible supersonic free shear layers were con�

ducted by Lessen et al� ��� �� and Blumen et al� ���� They looked at the basic instabilities of





both two�dimensional and three�dimensional compressible mixing layers� Gropengiesser ��	�

investigated compressible mixing layers� changing to spatial stability theory and relaxing

the iso�energetic restrictions of Lessen et al� ��� � Gropengiesser ��	� investigated the ef�

fects of Mach number and temperature ratio under the assumptions of parallel mean �ow

and inviscid perturbations� Much more recently� Ragab and Wu ���� investigated linear

instability waves in supersonic shear layers� They considered both inviscid and viscous

disturbances� For Reynolds numbers � �			 they found that shear layer growth rates ap�

proach those predicted by the inviscid stability equations� The only e�ect of viscosity they

found was to slow down the growth of disturbances� They also investigated the e�ects of

velocity and temperature ratio� The maximum growth rate of a compressible shear layer

was found to depend on the velocity ratio � � �U��U����U��U�� �in a complex manner��

They substantiated the correlation of compressibility by the convective Mach number of

Bogdano� ��� and Papamoschou and Roshko ���� Non�parallel e�ects were found to be

negligible for laminar mixing layers� and shear layer growth rates were found to follow the

predictions of inviscid stability theory as the Reynolds number �Rey � ��U��x�	�� became

large� Sandham and Reynolds ��� compared linear theory and direct numerical simulations

of a time�developing mixing layer� They found directly proportional agreement between

linear theory results and their simulation� The e�ects of density and velocity ratios on

the growth rates were included� They also found that Mc � 	�� was the dividing point

below which the two�dimensional behavior was dominant and above which oblique three�

dimensional waves became most ampli�ed� In ���� Jackson and Grosch ���� conducted an

extensive study of the inviscid spatial stability of compressible mixing layers� They stud�

ied the e�ects of Mach number� temperature ratio� wave frequency and the direction of

propagation� It was shown that there exists a critical Mach number above which there are

two groups of unstable waves� One group has a fast phase speed and the second has a slow

phase speed� Zhuang et al� ���� conducted an inviscid linear stability study similar to Ragab

and Wu ����� but� they introduced a new de�nition of convective Mach number using the

phase velocity of the most unstable eigenvalue� They found �a nearly universal dependence

of the normalized maximum ampli�cation rate on the convective Mach number �theirs���

The di�erence between their Mach number and that of Bogdano� ��� and Papamoschou

and Roshko ��� was the Mach number at which the normalized growth rate begins to level
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o�� being � 	�� for Papamoschou and Roshko ��� or � �� for Zhuang et al� ����� Jackson

and Grosch ���� were able to derive a convective Mach number based on linear stability

theory� Their de�nition of the convective Mach number Mc � M�� � 
u���� �
q

��
�� is

equal for a single species gas with 
� � �� Similar to the Zhuang de�nition� the normalized

growth function levels o� for Mc � �� However� the Jackson and Grosch ���� de�nition for

Mc � �� was based on the physical condition at which the sonic speeds of the two streams

are equal� Grosch and Jackson ���� extended their study of inviscid spatial stability to

three�dimensional mixing layers� They developed a one�parameter family of curves that can

give the growth rate for any given direction of mean �ow and wave propagation direction�

They also determined that for supersonic convective Mach numbers� certain combinations

of cross��ow angle and propagation angle can double the growth rate� This body of work

addresses the instability of free compressible shear layers� both subsonic and supersonic�

but� it lacks the e�ect of walls�

The in�uence of con�ning walls on the instability modes of supersonic shear layers has

been studied by a few researchers ��� ��� ��� ���� The �ndings of Tam and Hu ��� show that

the motion of the shear layer and the acoustic modes produce additional supersonic stability

modes� Greenough et al� ���� showed that for a con�ned compressible mixing layer the e�ect

of walls was to produce two general types of instabilities� con�ned Kelvin�Helmholtz modes

and supersonic wall modes� The �ndings of Zhuang et al� ���� and Morris et al� ���� show

that the growth rates for the Kelvin�Helmholtz modes are insensitive to the presence of

walls� The subsonic convective Mach number modes are not materially in�uenced by the

relative proximity of the wall� The Kelvin�Helmholtz mode is the fundamental instability

mode observed in the experimental work used for comparison by this thesis�

Experimental e�orts investigating the roll of large scale structures in the mixing pro�

cess by researchers such as Winant and Browand ��	� laid a foundation for the investigation

of compressible shear layer growth� The experimental study of Brown and Roshko ��� gener�

ally begins historical reviews of compressible mixing layers research� Brown and Roshko ���

conducted a series of experiments investigating the e�ects of density ratio� They concluded

that decreases in the shear layer growth rate were due to compressibility rather than density

e�ects� Much later� Oster and Wygnanski ���� provided basic information about the rate at



�

which shear layers grow and their relationships to turbulence intensities� Reynolds stress�

and the in�uence of forcing frequencies and their amplitudes�

Bogdano� ��� developed the concept of correlating the mixing layer growth rate with

the Mach number associated with the mean wave speed of the mixing layer
s large scale

structures� Papamoschou and Roshko ��� developed a similar de�nition of convective Mach

number for the correlation of growth rates in compressible mixing layers� Compressible

mixing layer growth rates collapse to a single curve when normalized by the growth rate

that would have occurred if the �ow was incompressible and the velocity and density ratios

were unchanged� These early works only examined the e�ects of compressibility on growth

rate and mean �ow pro�les� Samimy and Elliot ���� ��� have broadened the scope of

the research to examine other parameters and correlations� They examined the use of

alternative thickness parameters such as momentum thickness and found that it requires

a linear transformation of the convective Mach number to collapse the data� Turbulence

quantities such as intensities� shear stress and kinetic energy were found to decrease in

level and lateral extent with increasing convective Mach number� Goebel and Dutton ����

found signi�cantly di�erent results� They did �nd that the normalized mixing layer growth

rates decreased with increasing convective Mach number� They also found that transverse

turbulence intensities and normalized Reynolds stress decreased with increasing convective

Mach number� However� in contrast to the �ndings of others� Goebel and Dutton ����

found that the streamwise turbulence intensities and Reynolds stress remained constant

with increasing convective Mach number� More recent work by other researchers ��	� �� ��

have shown more conventional �ndings including the streamwise turbulence intensities and

Reynolds stress decreasing with increasing convective Mach number� Many issues remain

in the research of compressible mixing layer growth such as the in�uence of inlet turbulence

levels and some discussion of the existence of large scale structure at high Reynolds number�

Some issues will be resolved as instrumentation techniques for supersonics shear layers

improve� Other answers will come from the insight that can be gained from �ne grained

numerical simulations�

The early numerical investigations ��� ��� of mixing layers focused on the roll of

vorticity in mixing layers and the entrainment between streams� Sandham and Reynolds ���

began looking at three�dimensional e�ects in the form of oblique waves and also included
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the e�ect of compressibility� Chien et al� ��� conducted numerical simulations of uncon�ned

inviscid spatially developing shear layers� They found the mean �ow to be dominated by

two�dimensional� inviscid e�ects and the r�m�s� �uctuating velocity and density pro�les

consistent with experimental results� except for the transverse velocity �uctuations� v��

They attributed the di�erences to three�dimensional e�ects� One possible contributor to the

di�erences was their di�erent inlet disturbance� All their inlet variables were held constant

except the streamwise velocity which was perturbed sinusoidally� Their inlet conditions

required numerical disturbances to begin the process of transport of energy between axes� a

spatially slow process� Other researchers ���� ��� were beginning to move to Navier�Stokes

solutions to explore the growth of Reynolds stress turbulence and three�dimensional e�ects�

Farouk et al� ��� undertook an inviscid simulation of a con�ned supersonic shear layer�

They investigated the e�ects of density ratio� pressure ratio and velocity ratio on mixing and

the fundamental frequency of the mixing� Overall� di�erences in pressure between the two

streams and the associated shocks were able to produce signi�cant enhancements in mixing�

Leep� Dutton and Burr ��� carried out an inviscid simulation of a temporally evolving�

three�dimensional compressible mixing layer and arrived at results very similar to the prior

work of Dutton et al� ����� They found that compressibility primarily suppresses transverse

turbulence intensity but that streamwise turbulence intensity remains relatively constant�

Wilson et al� ���� conducted simulations of two�dimensional spatially developing mixing

layers� They found that the location and type of vortex pairing is in�uenced signi�cantly

by the type of inlet forcing used to stimulate the shear layer� Enhanced mixing at discrete

�fundamental and�or several sub�harmonics� produced vortex roll�ups at discrete locations

followed by a space of reduced activity� Broad spectrum forcing derived from experimentally

measured power spectra caused vortex pairing to occur over a region but not at �xed

locations� The broad spectrum or more randomized inlet perturbations produced a more

natural�like shear layer behavior� Recently Sarkar ���� took a detailed look at the mechanism

causing the compressibility e�ect of reduced shear layer growth rate� He found that the

compressibility e�ect was the reduced level of turbulence production and was not due to

dilational e�ects� Oh and Loth ���� recently applied an adaptive unstructured grid method

to inviscid simulations of the mean behavior of the velocity pro�le� turbulence intensities

and Reynolds stress� Oh and Loth ���� compare their �ndings with experimental data�
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Comparisons between numerical simulations� experimental data and analytical results guide

each other to insure the development of an accurate understanding of the phenomena�

As advanced computer systems allow better numerical simulations to be performed our

understanding of the physical mechanisms of compressible mixing improve�

��� Parallel Computing

Parallel Computing is the current generation in the evolution of scienti�c supercom�

puting� Parallel computing paradigms range from simple parallel systems to massively

parallel systems that have literally thousands of processors working in parallel� The sim�

ple parallel systems have multiple processors ranging in number from several to thousands

of processors� Computers systems such as those made by Cray� Convex�SPP�			� and

Meiko�CS��� are typical of the not�so�simple simple parallel computers� These systems

tend to follow conventional vector computing architecture� The massively parallel end of

the advanced computer spectrum are machines such as the Intel Paragon� MasPar MP���

Thinking Machines CM��� CM��		 and CM��� Kendall Square Research KSR��� Cray Re�

search TD and nCUBE��S� Each of these machines uses processors that number into the

hundreds or thousands� all working in parallel� The extremely rapid pace of evolution and

obsolescence in supercomputing research is best illustrated by the fact that three years ago

these machines were the fastest available and seemed to be the best trend for the future�

Now most of these machines are not in production� None is the fastest technology available

nor is any one of them� as then envisioned� considered the trend of the future� The high cost

of the massively parallel machines has directed the industry towards a more moderate ap�

proach using stackable units that employ tens to at most hundreds of processors� These new

machines use a combination of improved chip technology and multiple processors to achieve

mega�op rates that out perform all but the largest of the massively parallel systems ����

The research of this thesis has been conducted on the massively parallel architectures

of the Thinking Machines CM��		a and CM�� machines� The CM�� at the National Center

for Supercomputing Applications �NCSA� program at the University of Illinois Urbana�

Champaign is shown in Figure ���� Computing facilities at NAS and the National Center

for Supercomputing Applications �NCSA� at the University of Illinois�Champaign were used
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Figure ���� CM�� at NCSA� University of Illinois Urbana�Champaign�

in this research� NAS had a ��� node CM�� and NCSA has a ��� node CM��� The CM�

�		a used for this research is the Aerospace�Computer Science machine at Penn State� The

CM��		a was used for small scale code development and is capable of ��� G�ops peak speed�

The ��� node CM�� has a peak speed of �� G�ops� The architecture and performance char�

acteristics of these three machines are summarized in Table ���� The Connection Machines

massive computing speed and data processing paradigm o�er a signi�cant opportunity to

explore the use of �ne grain computing in the solution of practical engineering problems�

These advantages of speed and processing paradigm are discussed in greater detail below

along with some simple illustrations of the performance and programming bene�ts�
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The Connection Machines� both the CM��		a and the CM��� can be operated in a

Single Instruction Multiple Data �SIMD� mode and primarily use the data parallel pro�

gramming paradigm� Explicit algorithms such as the MacCormack ��� scheme work very

well on data parallel machines since they use a single instruction at a time acting over the

whole �eld or array� This is best illustrated in the array processing extensions of CM For�

tran�Fortran �	�High Performance Fortran �HPF�� In HPF� two NxM arrays A and B can

be added element by element and assigned to a third NxM array C by simply writing C � A

� B� Array constructs eliminate the cumbersome do loops of standard Fortran ��� One of

the impressive features of the CM architecture is its nearly linear scalability between mem�

ory� solution speed and number of processing nodes� Doubling the number of grid points in

a problem results in only an increase of about two in memory use and computation time�

This is a signi�cant development bene�t�

The SIMD architecture of the Connection Machines and the data parallel paradigm are

well matched to the explicit MacCormack algorithm being used here to solve the unsteady

shear layer mixing problem� The very high �oating point operation ��op� rate enables this

�ow �eld to be solved within an acceptable time frame� The grid used for this shear layer

calculation is ��� by ��� or �����	� grid points� To run a long enough time history to get

a ��� point FFT time series requires about ���		 time steps using a CFL of 	���� The

���		 time steps takes �� hours cpu time on ��� nodes �processors� of the NCSA CM���

Figure ��� shows how this problem scales in run time between di�erent numbers of nodes�

The problem memory size is best matched to � processors but scaling is nearly linear to

��� nodes� The linear scaling of the CM�� architecture makes changing the problem size

very acceptable in terms of time and cost� The problem can be doubled in size �number

of grid points� and run on twice the number of processors and hold execution time per

time�step nearly constant� The results from successively doubling the problem size and

number of processors are given in Figure ��� These results show the scaling characteristics

of the massively parallel machines� They also provide compute times that grow with N� the

number of grid nodes� rather than the N� growth common with more conventional vector

systems� Order N scaling characteristics alone do not govern the size or types of problems

that engineers and scientist may attempt to solve� but the softer size barrier takes a lot of

the headaches out of making the problem slightly larger�
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Table ���� Nominal Experimental Conditions

Parameter High Speed Low Speed

Case I Convective Mach Number Mc�	��

Mach � ���

Ttot�K� ��� ���

Ptot�Pa� ����� �����

U velocity�m�s� ���� �	�

V velocity�m�s� 	� 	�

Case II Convective Mach Number Mc � 	���

Mach �� ���

Ttot�K� ��� ���

Ptot�Pa� �	����� 	���

U velocity�m�s� ��	� �	�

V velocity�m�s� 	� 	�

��� The Simulation

The numerical simulation research that is presented in this thesis draws its simulation

�ow conditions from the experimental work of Martens ����� Martens investigated two

basic cases of con�ned compressible supersonic shear layers looking at the causes of mixing�

A summary of the nominal �ow conditions for the experiments are given in Table ����

The experimental conditions have Reynolds numbers that range from ��		 to ��		� based

on the shear layer thickness �	�		� m� as the length dimension� At Reynolds numbers

greater than �			� inviscid e�ects dominate the �ow� At these Reynolds numbers the shear

layer is initially laminar at the Case I and II conditions� The laminar �ow permits the

investigation of shear layer growth mechanisms without the complication of turbulence�

The growth mechanisms that produce large scale structures in these experimental shear

layers are Kelvin�Helmholtz instabilities� One of the goals for this simulation was to be able

to match the experimental results with a minimum number of adjustable constants and ad

hoc assumptions�

The experimental works of Martens et al� ���� �� and McLaughlin et al� ���� explore

the structure of large scale instabilities in supersonic shear layers� The large scale struc�

tures present in the �ow at low�to�moderate Reynolds number conditions are characterized

as Kelvin�Helmholtz instabilities� Martens uses a sub�atmospheric test facility to generate
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low�to�moderate Reynolds number �ows with Mach numbers up ��	� The experimental

conditions allowed the experimenter to investigate the in�uence of convective Mach number

while operation at di�ering pressures allowed the Reynolds number to be varied� Case I�

with a high speed Mach number of � has a convective Mach number of 	�� and a most

unstable frequency for the shear layer at about �� kHz� Laminar stability theory predicts

the most unstable frequencies for the two cases to occur in the mid to high �	 kHz range�

The experimental data were collected using a combination of static pressure taps� a �ve�hole

Pitot probe� hot�wire anemometers and schlieren photography� A comprehensive presenta�

tion of Martens
 data is given in reference Martens ���� and unless speci�cally noted it will

be the source for all references to experimental results�

Numerical simulations were made at both of Martens
 Case I and Case II conditions�

Static conditions for the �eld variables were derived from experiment total conditions and

recorded stream Mach numbers� Other conditions such as the unsteady inlet conditions

were developed as part of this research and are discussed in detail below� The mean inlet

primitive variables along with several other properties are given in Table ���

The experimental test section has stream wise� transverse and span wise dimensions

of 	��� m� 	�	�� m and 	���� m respectively� A schematic of the experimental test facility

is shown in Figure ���� The adjustable top and bottom walls diverge slightly to negate the

e�ect of boundary layer growth� The geometry and size of the test section were reduced

and idealized for the simulation� A constant cross�section was assumed to simplify the

numerical simulation� The computational domain was reduced to 	����� m by 	�	�� m in

the streamwise and transverse directions for the two�dimensional computations� Figure ���

shows a schematic of the two�dimensional computational domain� The three�dimensional

domain added the full duct width of ��� m� bounded by hard parallel walls� The length

was also reduced to 	�� m to conserve the computational size of the problem� Most of the

experimental data was recorded upstream of the 	�� m position and both the numerical and

experimental results show that as the �ow approaches the 	�� m position the shear layer

becomes turbulent and is signi�cantly in�uenced by the walls� E�ort was made to minimize

the impact of compromises between experimental detail and simulation practicality� A key

accomplishment was being able to place the �ow splitter at the inlet plane of the compu�

tational domain� No extra inlet region for �ow maturation �virtual origin� was needed� At
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Table ���� Simulation In	ow Conditions

Flow Variable High Speed Low Speed

Case I Convective Mach Number Mc � 	��

Mach ���� ����

Ttot�K� ��� ���

Ptot�Pa� ����� �����

Rtot�Kg�m�� 	��	�� 	�	��

U velocity�m�s� ���	 ����

V velocity�m�s� 	� 	�

Ts�K� �	��� ����	

Ps�Pa� ������ ������

Rs�Kg�m�� 	�	�� 	�	��

Acoustic C�m�s� �	��� 	���

	�Kg�m�s� �����E�� �����E��

Et�Joule� ������ ������

Unit Rey ������ �������

Case II Convective Mach Number Mc � 	���

Mach ��	 ���

Ttot�K� ��� ���

Ptot�Pa� �	����� 	����

Rtot�Kg�m�� ����� 	�	���

U velocity�m�s� ����	 ����

V velocity�m�s� 	� 	�

Ts�K� ���� �����

Ps�Pa� ����� �����

Rs�Kg�m�� 	�	��� 	�	�		��

Acoustic C�m�s� ���� 		�

	�Kg�m�s� �����E�� �������E��

Et�Joule� ��	�	� �����	�

Unit Rey �������� ������

Physical Domain

Length�m� 	�����

Height�m� 	�	��	

Width�m� 	����
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Figure ��
� Experimental test section

the inlet the axial velocity pro�le was approximated with a hyperbolic tangent function�

Velocity pro�le data at the inlet plane was not su�ciently detailed nor was the available

grid adequate for resolution of boundary layer like wakes� The very thin initial thickness

of the shear layer aided in achieving acceptable results with the hyperbolic tangent pro�le

assumption�

The grid for the two�dimensional simulation was selected by �rst �nding the axial

spacing required to resolve the shear layers
 most unstable frequency� Ten points per wave

length for the fundamental frequency instability were required� The grid spacing was then

modi�ed to give a point count that was a multiple of �� The multiple of � requirement

provided needed computer memory matching to obtain the best computational speeds� The

transverse grid spacing was selected based upon the ability to resolve the shear layer linear

stability eigenfunctions at the fundamental frequency� This spacing was also adjusted to

a multiple of �� The �nal two�dimensional grid has ��� axial by ��� transverse points�

The grid for the three�dimensional simulation was found by a similar process and yielded

a system of ��� axial� ��� transverse and ��	 lateral points� The use of such a �ne grid

is made possible through the use of the large memory and high speed of massively par�

allel computing technology� The computations were performed in the physical domain to

facilitate comparison with experiment�
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Figure ���� Two�dimensional computational domain schematic� physical ���x����� meters� grid ��x���

��� Scope and Outline

The chapters that follow present in detail the signi�cant contributions that have been

made by this work� Six principal contributions have been made by this work� �� the

development of a modi�ed Jameson damping based on density rather the pressure� �� the

development of an extrapolation method that yields realistic bounded results while letting

shock�like gradients pass through the boundary� � the development of an unsteady inlet

disturbance method that produces realistic near��eld behavior� �� for a single physical

set of �ow conditions comparison of results from experimental data� numerical simulation

and analytical laminar stability theory� and �nally �� a detail stability analysis of the

stability limits for the MacCormack ��� scheme including the di�usion terms� The �ne

grain numerical simulations provide much �ner detail than can typically be collected by

experiments if for no other reason than cost� The numerical results also represent the

unperturbed �ow �eld which has not been intruded upon by instrumentation� A brief

description of these contributions is given below followed by in depth discussion in later

sections of the thesis�

Early computer runs identi�ed the need for arti�cial viscosity to dampen errors that

were building up during long run times and causing the code to fail at unpredictable times�

The primary region of failure was along the shear layer and a relatively strong damping was
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required to maintain stability� The conventional Jameson
s arti�cial viscosity has the desired

feature of adding low order damping only where needed but was found to be ine�ective in

the nearly uniform pressure �eld� The Jameson method was modi�ed to use a dynamic

coe�cient based on the density gradient� The modi�ed Jameson method has been found to

be equally e�ective for conventional problems such as the Riemann problem�

The MacCormack ��� method can not solve for the solution directly over the entire

domain� The one�sided stencils of the predictor�corrector algorithm do not integrate the

solution variables at the �rst two or last two grid points in the domain� They must be

found from some other method� A third order extrapolation that is commonly used with

the method gave unbounded values when the high gradients of large rolling vortices passed

through the boundary� An alternative scheme was developed that gives third order and

higher extrapolations� The method provides smooth� bounded extrapolated values� except

when shock�like gradients are passing through the boundary�

Numerical shear layer calculations have been found to fall into two classes� �rst those

that use very low disturbances and only compute laminar �ows and� second� those that

use a virtual origin to match numerical results to experimental data� Virtual origins are

used to allow the numerical �eld to develop an unsteadiness typical of real �ows� An inlet

disturbance method based on the homogeneous turbulence behavior of shear layers has

proven to be very e�ective at letting the computational inlet and the experimental inlet to

be coplanar� Excellent comparison with experimental results was obtained� The new inlet

method produces realistic results at disturbance magnitudes consistent with those found

from experiments�

The research presented in this thesis brings together the numerical results presented

herein� experimental work from Martens ���� and analytical results from Lockard ��� to

provide a three way comparison on a single problem� The three way comparison helps

insure validity of results by requiring agreement across the di�erent methods� The cross�

comparison also provides expanded perspectives from which to attack the remaining issues�

Finally� in the original publication on the MacCormack ��� scheme� Gottlieb and

Turkel ���� presented a stability analysis for the convection equation giving the ampli�ca�

tion factor equation and the associated CFL number limit� They also suggested a process

for adding the di�usion terms to the �nite di�erence scheme and stated� without detail� a
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di�usion number limit for the scheme� An independent von Neumann analysis was con�

ducted for both the convection equation and the convection�di�usion equation� The high

order of the method results in very complicated ampli�cation factor equations� the forms of

which are very sensitive to the implementation process� The results replicate the Gottlieb

and Turkel analysis for the convection equation but �nd a small di�erence in the di�usion

number limit� Also the interrelationship between the CFL and di�usion number was found�

The unique contributions and comparisons of this thesis research are discussed in

greater detail in subsequent sections� Chapter �� the mathematical formulation section�

provides a discussion of the various governing equations and their supporting theories� as�

sumptions and physical principals� The methods and techniques for implementing these

governing equations are discussed in Chapter � numerical formulation� Included in this

section are discussions of the practical considerations for implementing the various algo�

rithms and procedures� Chapter � presents the single frequency simulations that examine

Case I conditions as stimulated by the time dependent eigenfunction pro�les generated by

the Rayleigh Equation� Chapter � presents the shear layer simulation results for Case I

Mc � 	�� conditions and a full range of steady and unsteady results for each conservative

variable and selected physical parameters� Chapter � also includes a discussion of the results

of a three�dimensional simulation of Case I conditions and discusses the di�erences from the

two dimensional results� Chapter � gives the simulation results for the Case II Mc � 	���

conditions� Comparisons are made with the Case I results to examine the in�uence of con�

vective Mach number� The �nal chapter� Chapter �� draws a number of conclusions about

the accomplishments that have been made and makes recommendations for future work�

An appendix provides a detailed von Neumann analysis of the MacCormack ��� scheme�



��

Chapter �

Mathematical Formulation

The mathematical representations of �uid motion are founded in the expression of

the governing conservation laws for mass� momentum� and energy� Various �ow conditions

in�uence the formulation of the conservation laws into a set of governing equations� The

supersonic speeds and the large relative Mach number of the shear layer streams require

the conservative formulation of the governing equations to correctly compute the speed and

intensities of possible discontinuities� The non�dimensional Mach numbers show the de�

gree to which inertia forces dominate over compressibility e�ects� Since the Mach numbers

encountered are of O��� compressibility e�ects are important and must be included� Com�

pressibility e�ects couple mass and energy through the primitive variable density� Similarly�

the non�dimensional Reynolds number shows the relative magnitude of inertia forces to vis�

cous forces� The Reynolds numbers for the simulated shear layers range from approximately

�			 to �				� and show that the inertia forces dominate over the viscous forces by several

orders of magnitude� The �nal set of �ow equations are obtained by deleting viscous terms

and the addition of one additional requirement� no heat conduction� The governing �ow

equations now consist of the conservation form of the conservation of mass� momentum�

and energy laws for inviscid �ow with no heat conduction� The resulting set of equations

are �rst order and hyperbolic in time and are commonly referred to as the Euler equations�

In the strictest sense the Euler equations are just the inviscid momentum equations but

the newer broader de�nition is used in this thesis� The Euler equations provide accurate

numerical simulation of �ows where dynamic e�ects dominate� The boundary conditions

that guide the solution are based upon the conventional method of characteristics used to

determine the number of physical conditions required at each boundary�

��� Governing Equations

The Euler equations along with two equations of state are needed to solve for the shear

layers dynamic behavior� The time�dependent Euler equations in conservation form for the



�	

conservative variables form a system of �rst�order� non�linear partial di�erential equations

that are hyperbolic in time� Expressing the Euler equations in vector form we obtain the

following�

�
��
Q

�t
�
�
��
E

�x
�
�
��
F

�y
�
�
��
G

�z
� 	 �����

The column vector
��
Q contains the conservative variables and the vectors

��
E �

��
F �

and
��
G contain the conserved �uxes� A rectilinear grid system is used for the simulations

allowing the governing equations to be written in Cartesian coordinates� The Cartesian

components of
��
Q are

��
Q �

������������
�����������

�

�u

�v

�w

�et

������������
�����������

�����

and the �ux vectors are de�ned by equations

��
E �

������������
�����������

�u

�u� � p

�uv

�uw

��et � p�u

������������
�����������

����

��
F �

������������
�����������

�v

�vu

�v� � p

�vw

��et � p�v

������������
�����������

�����
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��
G �

������������
�����������

�w

�wu

�wv

�w� � p

��et � p�w

������������
�����������

�����

The above set of equations assemble into �ve of the seven governing equations needed

for three�dimensional �ow� To close this system of �uid dynamic equations� two equations

of state are needed that give the relationships between the thermodynamic variables� The

seven unknown primitive variables that satisfy these equations are density ���� the axial�

transverse� and spanwise velocity components �u� v�and w� respectively�� pressure �p�� tem�

perature �T �� and internal energy �e�� The total energy term et used in the governing

equations is de�ned by et � e � �
��u

� � v� � w��� Equations ��� and ��� show both gen�

eral and common forms of perfect gas equations of state� Equation ��� is for a calorically

perfect gas with the assumption that the speci�c heat at constant volume Cv is a constant�

Equation ��� presents the perfect gas equation of state�

e � e��� T � � CvT �
p

�� � ���
�����

p � p��� T � � �RT �����

��� Boundary Conditions

Unsteady boundary conditions have largely been developed in �elds such as turbu�

lence and acoustics that are concerned with waves moving through the boundary� Work in

unsteady �uid dynamics areas such as turbulence simulation has produced in�ow boundary

methods based on linear theory eigenfunctions� Out�ow boundary treatments are typi�ed

by extrapolations or radiation methods� Radiation methods allow small amplitude waves

to propagate out of a domain without producing re�ected waves� Large amplitude waves�

especially shocks� generally cause these methods to fail�
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Research in unsteady inlet boundary conditions has grown as numerical simulation of

turbulence has become more practical� Rogallo and Moin ���� discuss some of the earlier

methods such as the �frozen turbulence� approximation� irrotational free stream� the forcing

of continuity� and stress�free boundary conditions �vn � 	 and �ut
�xn

� 	�� These approaches

were many of the common methods in use at that time for turbulent in�ow� out�ow and wall

boundary conditions� Subsequent research by investigators ���� �� ��� �� ��� ��� �� �	�

has used either the full complex eigenfunctions or the real part of eigenfunctions to provide

the unsteady behavior around the inlet mean pro�le� Numerous simpli�ed versions are

commonly used� such as the addition of perturbations to only the axial velocity ��� or

requiring perturbations of select boundary variables to be zero ���� ��� The most common

approach has been to employ the form of the real part of the eigenfunction as an amplitude

pro�le for a sinusoidal series� with each term driven at a di�erent frequency� Typically only

the most unstable frequency and two or three sub�harmonic frequencies are used ���� ��� �	�

��� Several researchers ��� �� ��� have used FFT
s from experimental data to model the

speci�c frequency spectra of an experiment� The models derived from experimental data

typically contain from nine to � frequencies� Moin ���� found that in�ow disturbances based

on the fundamental and several sub�harmonic frequencies resulted in equilibrium turbulence

characteristics within the distance convected in 	� eddy turnover time� Alternative methods

include the use of directly computed turbulence through extended in�ow regions or other

ad hoc methods such as periodic in�ow�out�ow conditions or the direct addition of a scaled

random number� The purpose of these methods has been to introduce unsteady behavior

that mimics both time�averaged and dynamic behaviors of real �ows correctly�

The accuracy with which a simulation reproduces real �ow behavior depends on how

closely the boundary conditions mimic the behavior of the physical variables� The approach

taken in this work has been to develop a simple disturbance form that uses physically based

coe�cients and has a minimum of ad hoc constants� The in�ow boundary conditions are di�

vided into their steady and unsteady parts� The steady boundary conditions are unchanged

from those that have historically been used for steady computational �uid mechanics prob�

lem� The unsteady perturbations build upon knowledge from linear stability theory eigen�

functions but use only a single sinusoidal term driven by a single frequency� A random

phase is added to the perturbation to give a white noise characteristic� For the out�ow
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boundary an extrapolation method has been developed that tolerates shock�like gradients

moving through the boundary�

�	�	� Steady Boundary Conditions

The steady boundary conditions used for this simulation are the mean variable pro�les

at the in�ow plane and hard re�ecting insulated surface conditions for the channel walls�

The primitive variables are fully speci�ed at the in�ow plane due to the totally supersonic

in�ow conditions� The mean pro�les of the primitive variables at the in�ow plane are based

upon an assumed hyperbolic velocity pro�le and isentropic �uid mechanics� The boundary

conditions at the out�ow boundary are determined from the interior conditions since the

�ow generally remains supersonic� An exception to the general out�ow boundary conditions

occurs when a localized cell of subsonic �ow develops� The subsonic cell is treated as a

convecting cell that is only in�uenced by the immediately surrounding gas� Re�ected cell

boundary conditions are used at the solid walls to ensure that the only physical boundary

condition� vanishing normal velocity� is imposed�

The In
ow Boundary

Accurate de�nition of the shear layer
s physical behavior at an in�ow is typically made

di�cult by poor quality and limited quantity of experimental data from the in�ow plane�

The strong gradients and severe �ow conditions make the in�ow region a di�cult area to

describe accurately for both experimental and numerical investigators� Experimental data

from Martens as close as 	�	� m to the in�ow plane signi�cantly improves the estimation of

the initial shear layer thickness and velocity pro�le shape and perturbation level� Martens


experiment was designed as a balanced pressure shear layer to give a uniform static pressure

�eld� The nominal Mach numbers and equal static pressure �eld data along with the

known total conditions of each stream� are used to determine the remaining variables� The

simulation conditions for both cases are given in Table ��� The remaining unknowns are

less well de�ned information such as the velocity pro�le shape and the shear layer thickness�

In Figure ���� Martens
 data for Case I conditions at 	�	� m show that the shear layer

was extremely thin� Based on the velocity pro�le at this axial position� the experimental

shear layer was estimated to be 	�		� m thick� The inlet velocity pro�le used for the inlet
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boundary condition is also plotted in Figure ��� for comparison� Two questions arose for this

simulation� For a very thin shear layer at supersonic speeds is the velocity pro�le a primary

contributor to the shear layer behavior And� what is the impact of the grid system
s

ability to resolve the pro�le Other investigators ���� have shown that for incompressible

�ow� the shape of the velocity pro�le in�uences the asymmetry and non�linearity of the

mixing process� The complex shape of a boundary layer generated wake could not be

resolved adequately by the desired grid system but the hyperbolic tangent pro�le could be

resolved� A poorly resolved wake was explored brie�y for the very thin shear layer but

no discernible di�erences from the hyperbolic pro�le were found� Therefore� a hyperbolic

tangent pro�le was used as the mean shape of the axial velocity� Thicknesses of 	�		�� 	�		�

and 	�		� m were investigated numerically� The smallest thickness� 	�		� m� was selected

as giving the most satisfactory comparison with the near in�ow experimental data�
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At the in�ow the two streams were joined by specifying the mean axial velocity pro�le

u and a uniform static pressure p� The hyperbolic pro�le used for the mean axial velocity

had the form

u �

�
u� � u�

�

	
�

�
u� � u�

�

	
tanh

�
���� � y
���

	
�����

where u� and u� are the high speed and low speed streams respectively� The parameter y

is the transverse distance from the splitter and � is the inlet shear layer thickness �	�		�

m�� The mean transverse velocity v was set to zero across the in�ow plane� With the

velocity pro�les de�ned and the pressure speci�ed the temperature and density pro�les

were determined to complete the in�ow conditions� The temperature pro�le for each stream

was calculated from the known total temperature and velocity pro�le using the isentropic

relation� The in�ow conditions were completed using the perfect gas equation of state to

�nd the density pro�le� At the walls a free�slip condition was assumed�

The Out
ow Boundary

At supersonic out�ow conditions no �ow information is transmitted into the domain

from downstream events� Therefore� the supersonic out�ow plane conditions were calculated

as part of the interior domain� The shear layer conditions produce vortices that have

enough circulation to produce occasional pockets of subsonic �ow that move through the

boundary� The out�ow treatment of the boundary was modi�ed to test for subsonic cells

and to provide the necessary physical boundary condition� The subsonic pockets of �ow

have Mach numbers as low as � 	�� in the low speed stream� From visual observations

of the solution contours� the subsonic regions had only a small in�uence on surrounding

gas� The one�dimensional characteristic equations were added to treat the subsonic regions�

Application of the one�dimensional characteristic equations assumed that the transverse

velocity behavior was unchanged by the boundary as the gas convected through it� The

constant static pressure condition typically used for time averaged subsonic out�ows was

not appropriate� While the time averaged static pressure was nearly uniform� local peaks

and depressions in static pressure traveled with each vortex� The constant value boundary

condition arti�cially distorted the solution as the local pressure variations moved through
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the boundary� The static pressure from the previous solution time step was used to give the

most realistic out�ow conditions� No experimental data was available as far down stream as

the exit plane but numerical tests showed the subsonic e�ect to be very local and transient�

The one�dimensional treatment provided an adequate measure of subsonic in�uence into

the domain without contributing a large computational expense�

Wall

The solid walls that con�ne the �ow were treated as ideal re�ecting adiabatic walls�

Characteristic analysis at the wall boundary yielded only a single positive eigenvalue that

required a physical boundary condition� The single physical wall boundary condition re�

quired was a vanishing normal velocity� vn � 	� Implementation of the wall condition was

based on the concept of re�ected cells ���� �	�� The �ow variables at re�ection cells were

de�ned so that all normal �uxes vanished at the wall�

�	�	� Unsteady Boundary Conditions

Development of �natural� in�ow conditions has not received a lot of attention to

date� Researchers have used a broad array of concepts to introduce unsteadiness from

numerical truncation error to small perturbations added to a mean �ow variable� The small

perturbation methods took on forms from planar pulsating of the in�ow velocity to more

complicated disturbances driven by series of sinusoidal functions� Many of these disturbance

techniques were explored as part of this research but none were able to overcome the need

for a �ow maturation region� The use of a maturation region requires shifting the numerical

results some arti�cial distance to form a virtual origin� Comparisons are then made between

the shifted computational results and experimental data� None of the methods found in

the literature produced a realistic mimicking of the in�ow �ow behavior such that a virtual

origin was not required to show close comparison with experimental data� By combining

ideas and data from stability theory and turbulence research a method was developed that

yields good comparisons with experimental data and uses only simple in�ow speci�cations�

Use of the eigenfunction pro�les for the perturbation of in�ow variables produced

Euler simulations with results very similar to linear theory� However� eigenfunctions are

of limited usefulness for two reasons� �� they are based upon an assumed known mean
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�ow �eld and �� their complex number functions are di�cult to relate to physical in�ow

data� However� the use of the eigenfunctions caused the magnitude� phase� and drive

characteristics of the velocity components� the pressure� and the density disturbances to all

be examined� The basic drive characteristic of each perturbation was chosen to be a single

sinusoid� The magnitude and shape of the u and v velocity disturbances were derived from

subsonic plane mixing experiments of Plesniak and Johnston ����� To approximate the shape

of the velocity pro�les a normalized Gaussian distribution was assumed� The Gaussian was

normalized by its peak magnitude and the �� width was matched to the shear layer

thickness� The disturbance magnitude then became a coe�cient to the Gaussian pro�le�

The axial perturbation� !Udisturb� was speci�ed to be a few tenths �	� � 	��� of a percent

of the high speed stream in�ow velocity� The transverse velocity perturbation was speci�ed

by an additional coe�cient that gave its relative magnitude to the axial perturbation�

The !vfactor was set at 	�� ��	"� based on data from Plesniak and Johnston ����� A

constant phase di�erence of �	o between the axial and transverse disturbances was added by

using cosine and sine functions respectively to drive the perturbations� The basic unsteady

velocity equations now has the form

u � umean �!Udisturb �Gaussian � cos��drive � t� �����

v � !vfactor �!Udisturb �Gaussian � sin��drive � t� ����	�

The exact relationships between the pressure and density are unknown� therefore� simpli�

fying assumptions were made� The pressure perturbations were limited in magnitude to

the levels produced by the maximum velocity disturbance levels based on incompressible

�ow� The Bernoulli equation was used to determine the magnitude� frequency and phase of

the pressure perturbation relative to the unsteady velocity components� The expansion of

both shear layer streams to a common pressure level provided the constant mean pressure

across the inlet� The pressure mean �eld and perturbations yielded the following unsteady

pressure equation

p � pmean �!pdisturb �Gaussian � sin����drive � t� ������
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To preserve consistency and boundedness in the �uctuating in�ow variables� the mean

total energy pro�le was assumed to be constant� The unsteady density was then solved for

using the total energy equation�

� �
p

�� � �����et�mean � �
� �u

� � v���
������

This complex process allows in�ow disturbances to be de�ned in terms of conven�

tional experimental data� mean pro�les and perturbation amplitudes� It also maintains

consistency between the thermodynamic variables and maintains them within physically

realistic bounds� The boundary variables now have a sinusoidal unsteadiness� The un�

steadiness could now be thought of as the disturbance amplitude of very small coherent

turbulence eddies rolling past the boundary point� At this point the disturbance was simi�

lar to methods used by many turbulence and shear layer researchers who added sinusoidal

disturbances at the most unstable frequencies and several of its harmonics� The in�ow dis�

turbance lacked the randomness of scales seen in small scale turbulence� The randomness

seen in natural �ows was contributed by adding a random phase disturbance�

Random Disturbance

Randomization of the sinusoidal disturbances was still needed to produce a natural

white noise disturbance behavior� The random walk concept was used by Sandham and

Reynolds ���� to add unsteadiness to the in�ow physical variables� A random walk process

produces a de�nable drift in the mean value of the randomized variable� Consider a point

that moves along a line in one�dimensional space� The point moves along the line by means

of successive jumps to the left and to the right� For any given jump it has a probability

p that the jump will be to the right and a probability � � p that the jump will be to the

left� If successive jumps are independent� the point will move along the line at a speed

dependent on the size of each !x� This basic scheme can be elaborated on in a variety

of ways such as varying !x at each step� The method of implementation had to consider

that the phase behavior of the in�ow variables was being controlled by sine and cosine

functions� A randomized phase disturbance was developed from a mean speed or drift and

a randomized disturbance to that mean speed� The mean speed or drift was de�ned by a
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frequency multiplied by the solution time variable� The randomized phase disturbance was

designed as a phase step size multiplied by a random variable that ranged from zero to one�

The random phase equation had the following form

� � �� sign�!�disturbance� random�� �� � random � �� �����

By adding the phase parameter� �� to accumulate random size increments at each time step�

the unsteadiness now has a complex random nature to drive the sinusoidal variation� The

�nal disturbance equation for each in�ow variable has the generic form

� � �mean � �disturbance � cos��drift � t� �� ������

The magnitude of the !�disturbance has an important e�ect on the �nal disturbance

time history� The magnitude of the phase increment controls the e�ective frequencies intro�

duced into the solution� Very large phase increments produced very choppy behavior of the

disturbance and very small increments produced insu�cient choppiness to mask the basic

driving frequency� Phase increments in the range between  and � degrees were found to be

most e�ective� The in�uence on the disturbance signal is shown in Figure ��� for zero� one

and six degrees of disturbance respectively� Six degrees of disturbance was used throughout

this research� It successfully mimicked the white noise behavior of small scale turbulence

and masked the basic driving frequency of the disturbance functions�

A �nal but key issue in implementing unsteady boundary conditions is physical con�

sistency� For high energy �ows such as simulated in this work� randomly assigned small

percentage changes in all the physical variables can eventually lead to an unstable solution�

From early simulation runs it was discovered that energy and density are closely coupled

in the solution� As a consequence� consistency was forced between density and energy�

Pressure and both velocity components were randomly disturbed about their mean pro�les�

but� density was computed from the disturbed variables and the mean total energy pro�

�le� A limit on the pressure variation was found using Bernoulli
s equation to determine

the maximum change in static pressure that would be caused by the peak velocity distur�

bances� This procedure was found to be very e�ective in ensuring that disturbed variables

maintained values within certain �nite limits and that the energy� and consequently density�
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remained bounded� Use of disturbance equations with randomization produced realistic re�

sults and successfully eliminated the use of a virtual origin for obtaining close comparisons

with experimental data�

�	�	� Linear Theory Eigenfunctions

Simulations of the shear layer for single frequency excitation were developed to ex�

amine the code
s basic ability to reproduce dynamic behavior correctly� Linear instability

theory has been used for many years to predict the behavior of shear layers due to small

amplitude disturbances� Consequently linear theory provided an excellent source of the
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perturbation functions and the disturbance behavior for comparison with numerical simu�

lations� The shear layer mean velocity �eld was computed using the unsteady inlet condi�

tions and was provided as input to a solution of the Rayleigh perturbation equation� The

Rayleigh equation was solved to �nd the eigenfunctions� The eigenfunction form is shown

by Equation �����

� � e��Ix
h
#�r cos��rx� �t�� #�I sin��rx� �t�

i
������

The eigenfunctions are a complete description of the primitive variable
s behavior for

a single frequency� They provide a precise description across the entire in�ow� and� they

are thermodynamically consistent� At the in�ow plane the stream�wise dependency x drops

out and the in�ow eigenfunction boundary conditions become

� � #�r cos���t�� #�I sin���t� ������

A complete set of eigenfunctions at the in�ow plane for Case I conditions are shown in

Figure ��� The eigenfunctions and the analytical results used for comparison were provided

by Lockard ����

The governing equations� the steady� the unsteady� and the eigenfunction boundary

conditions all form the basis of the numerical simulations that were conducted� The ability of

these equations to correctly simulate the shear layer is in�uenced strongly by their numerical

implementation� The next chapter discusses the numerical methods used to transform the

equations into computer solvable �nite di�erence equations� The methods used in�uence

everything from the frequencies that can be resolved to the accuracy to which they can be

resolved� the stability of the solution process and the speed at which the solution can be

computed�
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Chapter �

Numerical Formulation

The time�dependent Euler equations are well matched to the MacCormack two�step

numerical scheme used to integrate the governing equations� For this simulation the inlet

was treated as fully supersonic� the outlet was treated as a mix of supersonic and subsonic

�ow� and the walls were treated as parallel hard re�ecting surfaces� In the experimental

�ow there are subsonic regions in each boundary layer and in the immediate wake of the

splitter plate� For the Euler simulations presented in this thesis� the boundary layers do not

exist and the splitter wake was assumed to yield a hyperbolic tangent pro�le immediately

downstream of the splitter� A Cartesian grid system was used�

��� MacCormack ��� Method

The MacCormack ��� method has been used by many researchers investigating shear

�ows� The higher�order accuracy of the fourth�order derivative in space is needed to resolve

the nonlinear behavior of the �ow accurately� especially if turbulence quantities are to be

resolved� The MacCormack ��� scheme was developed by Gottlieb and Turkel ����� The

method is a predictor�corrector scheme that is second�order in time and fourth�order in

space� Gottlieb and Turkel investigated the von Neumann stability limits for this method

using the convection and the di�usion model equations� For the convection equation the

stability is achieved for CFL numbers of �� or less� They also determined the di�usion

coe�cient limit of �� for the di�usion equation� The von Neumann stability analysis

for both equations is presented in detail in Appendix A� The potential application of the

method to the Navier�Stokes equations was examined by development of the von Neumann

analysis of the convection�di�usion model equation� The analysis found a cell Reynolds

number type of relationship between the CFL and di�usion coe�cient limit equations� The

limit was supported in practice when to attempts compute viscous solutions would remain

stable for only a relatively small number of time steps� Detailed von Neumann stability

analysis of the convection�di�usion equation is presented in Appendix A�
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Figure ���� Ampli�cation and Phase Error Behaviors of the MacCormack ��
 Method applied to the con�

vection model equation� Behaviors for two CFL numbers ��� ��� and ��
 are shown�

The ampli�cation and phase error behaviors of the MacCormack ��� method as ap�

plied to the convection equation are shown in Figure ��� The �gure shows that both the

ampli�cation factor damping and the phase error improve as the CFL number is reduced

from �� to ���� THE CFL number of 	��� has less damping and less phase error� especially

for the lower wave numbers� The phase error also changes from a leading error to a lag�

ging error� The most accurate wave representation occurs when the ampli�cation damping

and phase error are within acceptably small limits� Based on this analysis� waves that are

represented by a k!x of 	�� or less are considered accurately resolved�

In their analysis of the method Gottlieb and Turkel ���� make the statement that

the method becomes time accurate at CFL numbers less than ���� This is based on the

magnitude of the time error approaching the same magnitude as the spatial error� One�

dimensional simulations of acoustic waves were conducted to examine the predicted wave

speeds for a range of CFL numbers from �� to ���� The tests demonstrated that acoustic

wave speeds are not predicted accurately until the CFL numbers approaches 	���� Based

on the results of these tests and the von Neumann analysis� all the simulations conducted

in this research used a CFL number of 	����
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Application of the MacCormack ��� method begins with the hyperbolic form of the

Euler equations� The Euler equations in two dimensions take the form

�Q

�t
�
�E

�x
�
�F

�y
� 	 ����

where Q is the conservative variable vector written Q � ��� �u� �v� �e�T and E and F are the

mass� momentum� and energy �ux vectors� In ��� Strang ���� ��� developed the concept

used by MacCormack
s method of representing the multidimensional di�erence operator as

a product of one�dimensional operators� The split operator method developed by Strang

was for linear systems� However� Gottlieb ���� later demonstrated that the method was

also valid for the non�linear case� Similar to the second�order MacCormack scheme� the

MacCormack ��� method can be time split into separate spatial operators� The time�split

form improves stability and increases the time�step limit� Time�splitting gives the following

operator form

Qn
�
i�j � L


x �!tx�L


y �!ty�L

�

y �!ty�L
�

x �!tx�Q
n
i�j ����

where Lx�!tx� and Ly�!ty� are one�dimensional time�split operator sequences� The ���

and ��� superscripts denote the forms of the operator in which the embedded predictor�

corrector sequences alternate between forward�backward and backward�forward sequencing�

respectively� Strang ��	� also established the requirement that the operators must be applied

in a symmetric sequence to maintain the order of accuracy� To avoid biasing errors� each

spatial operator is alternated between a forward�backward and backward�forward sequence

of predictor�corrector applications� Each operator includes a double sequence of the basic

predictor�corrector stencil� The result of a complete integration cycle� which includes both

L
 and L� in each direction� is the advancement of the solution four complete !t time

steps� Each one�dimensional predictor�corrector operator is implemented in a four�step�

time�split sequence that is illustrated by the following equations�

Q
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���
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�!x
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j
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j
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Each predictor or corrector operator can not directly compute either the �rst or last

two grid points in each direction because of the one�sided stencils used� The alternating

forward�backward and backward�forward sequence of application increases the number of

specially coded boundary treatments needed to compute all the possible alternatives� Some

authors ���� � have incorporated their extrapolation schemes into the predictor and cor�

rector equations� However� coding and computing e�ciencies were gained by separating

the directly computable interior solution and the extrapolated ghost cell regions j � � or

j � N � �� One corner of the grid system with two ghost cell borders is illustrated in Fig�

ure ��� During integration the basic predictor or corrector operators are used to integrate

the non�linear Euler equations over their complete N � � domain� The solution for the

remaining two rows of points �i � �� � or N � �� N� are found using an alternative method�

That alternative method is a combination of boundary conditions and extrapolation� The

interior grid locations j �  or j � N � � are treated with the appropriate boundary

condition at each operator application� The interior solution and boundary conditions are

then extrapolated to the ghost cells� The continual boundary updates keep the interior and

boundary solutions in close synchronization with each time�split operator as it steps across

two time steps� The boundary conditions and the ghost cell treatment are key elements

in how successfully the unsteady boundary conditions are transmitted into the simulation�

They are discussed below in subsequent sections�
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��� Arti�cial Viscosity

�	�	� Modi�ed Jameson

As the shear layer solution progresses in time� strong dispersion e�ects occur and grow

at the shear layer interface� The addition of arti�cial viscosity is a common method used to

dampen strong dispersion e�ects and unstable growth� The static pressure �eld in the shear

layer is nominally constant across both high and low speed streams� but� the temperature

and density both changed signi�cantly� The density di�erence between the low to high

Mach number streams is a factor of approximately two� This strong density change causes

the split MacCormack operator Ly to see a shock�like increase in the conservative variables

density and total energy� The modi�ed form of Jameson
s arti�cial viscosity damps the non�

physical dispersion errors that occur� The Jameson type of arti�cial viscosity was chosen

due to its selective application of second or fourth order damping to the �ux terms� The

basic form of the method is given by
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EAV � E � ����
�U

�x
� ����

��U

�x�
����

The magnitudes of the computed coe�cients ���� and ���� determine the amount of

second and fourth order damping� respectively� The standard form of Jameson arti�cial

viscosity uses a pressure gradient switch to add second order damping in regions of large

discontinuities� However� the pressure based switch is ine�ective in the nearly uniform

pressure �eld of the shear layer� The pressure terms of coe�cient ���� were directly replaced

with the density variable� The modi�ed switch was tested in simulations of the Riemann

shock tube problem� It demonstrated nearly identical behavior to the pressure based switch�

The density based switch is shown in Equation ��� The fourth order damping coe�cient

did not require any modi�cation or variable changes�

�
���
i � ���juj� c�i

j�i
� � ��i � �i��j
�i
� � ��i � �i��

����

and

�
���
i � max�	� ���juj� c�i � eps���� ����

The recommended constants �� and �� remain unchanged from the values 	��� and ������

given in Hirsch ����� Slight performance gains can be achieved by tuning the constants�

Application of the density switch to the shear layer problem was very e�ective� The

modi�ed Jameson method e�ectively stabilized the shear layer solution� Startup from the

estimate of the initial �ow �eld is the only situation that occasionally required high levels

of damping� To avoid frequent changing the constants �� and ��� an additional method of

damping by Sankar was added during startup calculations�

�	�	� High Order Sankar Damping

Sankar ���� introduced a �lter for aeroacoustics applications that was explored as a

competing method to Jameson arti�cial damping� Sankar has demonstrated the method
s

ability to dampen very high frequency non�physical oscillations� The �lter provides a high

order damping by adding an explicit term to each conservative �ux term that is an average
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of the local fourth�order gradient in each of the dimensional directions� The �lter has the

form

D � �� � qi
��j � �qi
��j � ��qi�j � �qi���j � qi���j � qi�j
� � �qi�j
� � �qi�j�� � qi�j���

���	�

where � is a user�supplied coe�cient� Sankar suggested � be on the order of ������ With

the suggested coe�cient� Sankar
s �lter has a powerful in�uence on the solution� The intent

of the Euler solutions was to run with as little dissipation as needed to make the numerical

scheme stable� Consequently� Sankar
s �lter was only used when start�up disturbances were

present�

��� Grid

The grid system used for the numerical simulations was developed by examining �ve

issues� �� the ability to resolve the axial length of the instability wave� �� the ability to

resolve the shear layer velocity pro�le� � the ability to resolve acoustic frequencies in the

two streams� �� the maintenance of acceptable cell aspect ratios and �� the consideration of

computer memory capacity� The ability to resolve a wave was �rst assessed by determining

the number of points required by the numerical scheme to resolve a wave� From the stability

analysis presented in the previous chapter� The MacCormack method can accurately resolve

waves for which the grid system provides about � points per wave� A second method of

assessing the ability of a numerical scheme to accurately resolve a wave is by examining

the methods degree preservation of the wave
s dispersion relation� Tam and Webb ����

developed a method for evaluating the ability of a �nite di�erence equation accurately

compute a wave� The key steps of the method begin with the �nite di�erence equation

written in a general form as

�f

�x
�x� 	� �

!x

MX
j��N

ajf�x� j!x� �����

where the aj 
s are the coe�cients of the di�erence scheme� Applying a Fourier transform

to both sides yields



�	

i$� %f 	�


� �

!x

MX
j��N

aje
i	j�x

�
A %f �����

Comparing the two sides yields a relationship for the wave number of the Fourier transform

of the �nite di�erence equation ���� The �nal form is given by

$� 	�


� �i
!x

MX
j��N

aje
i	j�x

�
A ����

Figure � shows Equation �� plotted for the fourth order central scheme� For the

linear wave equation used for von Neumann stability analysis� the MacCormack ��� method

is equivalent to a fourth order central scheme� The fourth order central scheme is accepted

here as being representative of the MacCormack ��� scheme� Figure � shows the close

comparison between the fourth order central scheme and the ideal up to about 	�� �!x or

approximately � points per wave� Ten points per wave were chosen to provide a working

margin in development of the simulation grid�

The critical�path sequence for the grid development was in�ow velocity pro�le reso�

lution� computer memory capacity� and the resolved acoustic frequency� The grid system

for the two�dimensional simulation provided the greatest spatial resolution over the com�

putational domain� The three�dimensional simulations required compromises in both the

physical domain and the frequencies that could be resolved� The reduced resolution of

the instability and acoustic waves had a profound impact on both the dynamic and time�

averaged results� To help understand the in�uence of wave resolution on the simulation

results� initial estimates were made of the resolved frequencies based upon wave lengths of

ten grid spaces�

For each set of simulation conditions the Kelvin�Helmholtz most unstable frequency�

and the acoustic frequencies of both the high and low speed streams were estimated� Ta�

ble �� present the estimated resolved frequencies for each of the three simulations� The

lowest upper boundary of acoustic frequency that could be resolved was considered the limit�

ing wave for each simulation� As shown in Table �� for Case I� ��D Mc � 	��� frequencies of

����� Hz and below could be computed accurately� Extending the case to three�dimensions

reduced the limiting acoustic frequency to �� Hz� It also reduced the resolved instability
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wave to less than the expected most unstable frequency� The last question of grid resolution

was the question of how close to turbulence dissipation scales could be resolved with the

�ne grain grid�

The lower limit of the grid
s ability to resolve large scale motions was examined by

�nding the local Kolmogorov scales at the inlet and shear layer growth saturation locations

�for ��D at x � 	� and � 	�m�� The experimental conditions and the local shear layer

thickness were used to compute a local Reynolds number� The ratio of the Kolmogorov

scale length � to the large scale length l was determined from

�

l
� Rey�

�
� �����

The local length scales used were linlet � 	�		� m and lsaturation � 	�	� m� The computed

Kolmogorov scales in both the axial and transverse directions were approximately two
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Table ���� Grid Resolved Frequencies

Kelvin�Helmholtz
Instability

High Speed Stream
Acoustic

Low Speed Stream
Acoustic

Case I� ��D
Mc � 	��

�� points & �� kHz ������ kHz ���	�	 kHz

Case I� �D
Mc � 	��

� points & �� kHz ��� kHz ���� kHz

Case II� ��D
Mc � 	���

�� points & 	 kHz ������ kHz �	���� kHz

orders of magnitude O��	�� smaller than the shear layer local thickness scales at both axial

locations� The �ne grid resolution controls not only the scale of the waves that could be

resolved but also the basic programs memory requirements and overall speed�

For the two�dimensional simulations the �nal grid provided nine points across the

in�ow velocity pro�le� The ��� length by ��� height grid yielded a cell aspect ratio of ��

and required �� Mbytes of memory to run on the ��� node CM�� at NCSA� The computed

domain physical size was 	����� m in length and 	�	�� m in height� The compute time

was ��� 
 �	� seconds per grid point per solution time step� The ��� node CM�� has a

theoretical peak speed of � Giga�ops per second� The Euler code ran at �� Giga�ops per

second� or �" of peak� The numerous variables and physical parameters that were collected

pushed the code memory requirement to approximately �			 bytes per grid point�

The physical domain for the three�dimensional case was reduced to 	��	 m in length�

	�	�� m in height and 	��� m in width� The grid for the length� height and width of the

three�dimensional simulations was ��� by ��� by ��	� respectively� for a total of ��������	

points� This grid provided �ve points across the in�ow velocity pro�le� The ��� length

by ��� height grid maintained the a cell aspect ratio at the two dimensional value of ���

The number of stored variables and physical parameters was reduced dropping the memory

requirement to ��	� bytes per grid point and ��� Gigabytes overall� The compute time was

��	
�	� seconds per grid point per solution time step� The three�dimensional simulations

ran at ��� Giga�ops per second� or �" of peak� For both the two� and three�dimensional

simulations the computation of the boundary conditions was the most signi�cant limitation

to the speed at which the code ran�
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��� Boundary Conditions

The experimental problem being solved is predominately supersonic at both the inlet

and outlet� When only computing the Euler equations� the inlet was treated as fully su�

personic� and� the in�ow physical variables were all speci�ed� Supersonic �ow conditions

at the outlet were calculated directly as part of the interior solution� However� subsonic

cells did occur due to the exiting vortices� The �ow in these vortices was usually near sonic

conditions with a rotational velocity that was slow compared to the convective velocity� The

resulting subsonic �ow was treated with one�dimensional characteristics� This procedure

proved to be practical due to the infrequent occurrence of subsonic cells and their high

convection rate� The con�ning walls were treated as hard re�ecting adiabatic walls with

slip velocity conditions�

�	�	� Unsteady In
ow

The basic development of the unsteady in�ow conditions was given in the discussion

of the mathematical formulation of the in�ow conditions� The remaining issues are how

to introduce the unsteadiness without introducing a dominant single frequency and how to

ensure that the perturbation is accepted into the interior solution�

Unsteadiness must be introduced into the in�ow boundary conditions in a reliable way

and yet produce a purely random disturbance� In order not to introduce a single driving

frequency into the solution� a frequency selection process was developed which yielded a

higher frequency than that which can be resolved by the grid� The excitation frequency

�shear was found by dividing the shear layer mean acoustic speed by twice the shear layer

thickness� The resulting drive frequency for the Case I shear layer was ���	 Hz� The

random walk phase � was added to the unsteady equations to produce the white noise

behavior in the perturbations� The �nal unsteady in�ow boundary conditions are given by

the following pseudo�code

�shear � ��


�c�
c��

�

��

�
�����



��

� � ��!walk � sign� �

��	
� random� where � �� � random � ��� �����

p � pmean �G�y� �!Pmax � sin����shear � time� �� �����

u � umean �G�y� �!Umax � cos���shear � time� �� �����

v � G�y� � Vfactor �!Umax � sin���shear � time� �� �����

� �
p

�� � �� � �etbc � �� � �u� � v���
���	�

The �nal issue for the in�ow was how to set the ghost cell values such that the pre�

scribed boundary behavior is accepted by the interior scheme� Unsteady in�ow conditions

severely tax the central di�erence algorithm
s ability to accept the behavior of a rapidly

varying variable into the domain� A key contributor to transmission of the boundary con�

dition into the domain is the smoothness of the derivatives� A conventional zero derivative

extrapolation method occasionally resulted in a nearly discontinuous change in the solution

variable at the ghost cell� Simulations that used this technique had di�culty transmitting

the perturbation into the interior domain� Time averaged data showed signi�cant fall�o� in

the r�m�s� amplitude of the perturbation at the �rst few grid points in the interior domain�

The magnitude of the fall�o� showed the interior algorithm
s di�culty in accepting both

the rapid variation of the boundary value and a non�smooth derivative� The ghost cell

extrapolation method discussed in a following section provides a smooth� damped variable

behavior� The smooth behavior of the variable and its derivatives greatly reduced the mag�

nitude of disturbance needed to stimulate the �ow� In�ow disturbance amplitudes used for

the simulation were reduced from several percent of the mean �eld variable to several tenths

of a percent� The reduced values are consistent with levels estimated from experimental

data�
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Table ���� Free Slip and Wall Conditions� Cell Centered Boundary

Density and Pressure
� int� � boundary point �

�g� � �int�
�g� � �int�
pg� � pint�
pg� � pint�
�int�� tint�� pint� calculated

Tangential velocity

uwall calculated
ug� � uint�
ug� � uint�
Normal velocity

vint� � 	
vg� � �vint�
vg� � �vint�

�	�	� Wall Conditions

The bounding walls in this simulation are treated as hard re�ecting adiabatic surfaces�

Symmetry conditions were used to provide wall boundary conditions� Symmetry conditions

can be used for boundaries for which the boundary conditions can be expressed as symmetric

or antisymmetric re�ections of the interior solution� The adiabatic re�ecting walls of this

simulation are an ideal example� Setting the wall boundary conditions involved setting

the ghost cells to symmetric or asymmetric values of interior conditions� The symmetry

conditions are equivalent to the zero gradient condition� �i�e� �p
�n � 	� and were used for

the physical variables density� and pressure or temperature� The tangential velocity u was

also set with symmetry conditions while the condition of zero normal velocity was set using

anti�symmetry conditions� The wall boundary conditions and the ghost cell values are given

in Table ���

�	�	� Out
ow Conditions

The out�ow conditions for the shear layer are predominantly supersonic� Since the

supersonic �ow characteristics all point out of the domain� the exit boundary conditions
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were computed directly as part of the interior solution� The backward stencil used for the

MacCormack scheme
s predictor�corrector sweeps leaves the last two cells un�computed�

and� they must be extrapolated� The extrapolation method developed as part of this re�

search was used to determine the ghost cell values� The extrapolation method is discussed

in the following section�

The out�ow conditions for the shear layer were not always totally supersonic� Occa�

sionally one of the large vortex structures had su�cient strength to cause the total velocity

magnitude in part of the core to drop below sonic conditions� The result was a pocket of

�uid advecting axially with a Mach number between �� and ��	� The size of the pocket was

occasionally not small in relation to the size of the duct� being up to approximately �" of

the channel height� In addition� the pressure at the center of the vortices varied signi�cantly

from the mean static level� The subsonic boundary treatment had to provide downstream

in�uence without signi�cantly distorting the vortex pressure �eld to allow rapid convection

of the cell out of the domain and not distort the surrounding supersonic �eld� The solution

was to locally apply the one�dimensional out�ow characteristic equations where the �ow was

subsonic and use the local pressure at the immediately preceding time step as the boundary

condition� This small !p was used to provide the subsonic boundary correction into u and

�� The transverse velocity was assumed constant� This simple procedure provided the small

subsonic in�uence into the solution�

�	�	� Ghost Cell Determination

The MacCormack ��� method lends itself readily to the treatment of the two outside

grid locations of a domain as ghost cells� The one�sided operators of the stencil can not

compute the outside cells directly� Therefore� some form of approximation had to be used

to obtain their value� The supersonic out�ow found in a con�ned shear layer problem

can be treated by classic extrapolations in time or space� Second�order methods have

commonly used �rst or second�order spatial or temporal derivative formulas to determine

extrapolated values� While these methods may work� they introduce an ad hoc assumption�

�i�e� �f
�x � 	� into the solution� This assumption has little justi�cation other than that it

has provided acceptable results� Turkel et al� ���� � extended this type of extrapolation

to employing higher order derivatives for higher order �nite di�erence schemes� These zero
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derivative assumptions can introduce unbounded variable behavior into the solution� The

errors propagate into the interior domain solution because of the width of the interior stencil

and can cause signi�cant change in the interior solution� The use of improved boundary

approximations became especially important as the gradients moving through the boundary

were occasionally very large� Some variables could change by a factor of more than two

within only several grid spaces�

Some researchers �	� investigating numerical methods have asserted the importance

of having the order�of�accuracy of boundary conditions one order�of�accuracy less than the

interior scheme� The one�order reduction of accuracy provides improved solution stability

at the boundary through arti�cial viscosity damping� This has been found to improve the

stability of high order methods at the boundaries� while minimizing inaccuracies introduced

into the interior solution� The approach taken for this work is to model the boundary

derivatives and use the resulting stencils to obtain spatial extrapolations to update the

ghost cells�

A new extrapolation stencil was developed from the known derivative of the boundary

variable� The �rst derivative of �ow variable� f � at the boundary was computed using only

interior points� Next the �rst derivative central di�erence was set equal to this known

derivative� The central di�erence stencil provides the single unknown at the ghost cell

location� The depth of the ghost cell that was reached depended on the width of the central

stencil that was used� Conceptually this approach is given by the equation

�f

�x
jbackward �

�f

�x
jcentral �����

Determination of the interior derivative and the ghost cell calculation can be combined into

a single stencil� Use of second order accurate di�erence equations for both the backward

and central stencils yielded a single equation for the �rst ghost cell beyond the boundary�

In di�erence form Equation ��� becomes

fi � �fi�� � fi��
�!x

�
fi
� � fi��

�!x
�����

that can be solved for fi
� to give
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fi
� � fi � fi�� � fi�� ����

Taylor�series expansions about point i were substituted into the stencil to �nd the

actual partial di�erential equation being solved� The modi�ed equation solved by stencil

Equation �� has the following form

��f

�x�
ji � �

�

��f

�x�
ji�!x� � �

�

��f

�x�
ji�!x�� � � � � � 	 �����

The modi�ed equation shows the stencil solves the PDE of the third order derivative

at i being equal to zero� The advantages of this method are that �� the stencil is centered

on the boundary cell for which all the �ow conditions are known� and �� no assumptions

about the value of the �ow variables or their derivatives were required to derive the stencil�

The second ghost cell value can be determined in a similar manner by use of either

the �rst or second derivative� Use of the �rst derivative required the substitution of a high�

order central di�erence stencil to obtain a term at i��� The extrapolation equation for the

second ghost cell value is given by

fi
� � �fi
� � ��fi � ��fi�� � �fi�� �����

This extrapolation formula has a modi�ed equation that also yields a PDE of the third

order derivative at i being equal to zero� The PDE has the form�

��f

�x�
ji � 

�

��f

�x�
ji�!x� � ��f

�x�
ji�!x�� � � � � � 	 �����

The second derivative formulation of the extrapolation equation caused the stencil width

to grow to six terms and yielded the following

fi
� � ��fi
� � ��fi � ��fi�� � ��fi�� � ��fi�� �����

The modi�ed equation for this stencil yields a PDE with the fourth order derivative at i

being equal to zero� The modi�ed equation has the form

��f

�x�
ji � ��

��

��f

�x�
ji�!x� � ��

��

�f

�x
ji�!x�� � � � � � 	 �����
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Figure ���� Density �eld exit plane with ghost cells� Flow direction is left to right�
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Completion of the extrapolation method completes the numerical development of the

code� The next step in the development process is the simulation of single frequency driven

shear layers� The following chapter discusses a series of simulations of the Mc � 	�� Case

I shear layer under single frequency excitation� The single frequency simulations provided

insight into the behavior of the shear layer in response to a dominant single frequency� The

insight gained has also helped in understanding the observed behaviors into broad frequency

excited simulations�
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Chapter �

Shear Layer Single Frequency Excitation

Linear stability theory is a proven method to determine the motion of small amplitude

perturbations in a steady or mean �ow �eld� As such it provides a reliable method with

which to compare both numerical and experimental research� Linear theory solutions have

been used by numerical simulation researchers ��	� �� as a check on the basic capability

of their simulation codes� Linear theory results have been used in several ways in this

research� �rst� to provide �rst order behavior in the development of the in�ow perturbation

method� second to establish the frequency resolving capturing capability of the code� and

third to improve understanding of the contribution to the overall solution made by single

frequency waves� This chapter presents Euler simulations of a shear layer at the nominal

Case I conditions under single frequency eigenfunction excitation�

��� Dynamics

The eigenfunctions used to provide inlet excitation were developed by Lockard based

upon Martens experimental mean velocity pro�les at Case I nominal conditions� Only the

inlet excitation method di�erentiates these single frequency simulations from the broad

spectrum excitations results presented in Chapter �� A complete set of linear theory eigen�

functions for the Rayleigh equation were used to provide a thermodynamically consistent

set of in�ow conditions for the supersonic inlet� The eigenfunctions for a 	�		� m shear

layer thickness at ���			 Hz are displayed in Figure ����



�

-0.020 -0.010 0.000 0.010 0.020
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

Channel Position (m)

b)

T
ra

ns
ve

rs
e 

V
el

oc
ity

 (
m

/s
)

vreal

vimag

-0.020 -0.010 0.000 0.010 0.020

0.00

0.05

0.10

0.15

0.20

Channel Position (m)

P
re

ss
ur

e 
(P

a)

d)

preal

pimag

-0.020 -0.010 0.000 0.010 0.020

0.0E0

5.0E-6

1.0E-5

1.5E-5

2.0E-5

D
en

si
ty

 (
kg

/m
3 )

Channel Position (m)

c)

ρreal

ρimag

-0.020 -0.010 0.000 0.010 0.020
-30

-20

-10

0

10

20

30

40

50

60

Channel Position (m)

a)

A
xi

al
 V

el
oc

ity
 (

m
/s

) ureal

uimag

Figure 
��� Rayleigh Equation Eigenfunctions for ������ Hz Disturbance at the Inlet for Case I Mc � ��� Conditions a� Axial Velocity m�s b�

Transverse Velocity m�s c� Density kg�m�� b� and d� Pressure Pa�



��

�	�	� Frequency Behavior and Auto�spectra

Time histories of the total mass �ux unsteadiness ��V �� were recorded to allow ex�

amination of the frequency simulation behavior of the shear layer� Figure ��� presents the

discrete FFT spectra and its auto�spectra� The transverse width of the eigenfunction pro�

�les and the Euler equation admittance of multiple frequencies result in a frequency spectra

and auto�spectra with �nite width at the 	��� m downstream position�
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Figure 
��� Total Mass Flux Unsteadiness ��V �� at X � ���� m� a� FFT spectra and b� Auto�spectra�
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��� Time�averaged Behavior

�	�	� Shear Layer Growth

Linear theory predicts that a single frequency shear layer growth will begin with

slowly� followed by a period of rapid growth until a maximum is reached after which the

shear layer thickness decreases to some constant level� The shear layer growth pro�les� ���

boundary layer� �� vorticity and �� momentum� are displayed in Figure ��� The linear

theory sequence of the disturbance growth and decay is shown by the boundary layer and

vorticity thicknesses� The growth rate in the rapid growth region are given in Table ����

These rates are lower than those found for the broad frequency or �natural� simulations�

Other simulation researchers� such as Lu and Wu ��� who have used single frequency and

eigenfunction based inlet excitation� have found similar growth rates� albeit for a much

higher range ���	� � Mc � ����� of convective Mach number� The constant turbulent

growth rate in the region between 	�� to 	��� m axial distance are approximately �	" of

the �natural� values� The cause of the di�erences is not understood at this time�

Table 
��� Shear Layer Growth Rates for a Single Frequency �� kHz

Growth Type d�
dx

��� �Boundary Layer� �	��

�� �Vorticity� �	���

�� �Momentum� �	���

�	�	� Instantaneous Results

Conventional Two�dimensional Plot Observations

The shear layer growth for four single frequency excitation cases is shown in Figure ����

From linear theory lower frequencies are expected to have longer laminar periods followed by

rapid transition to larger scale vortices� The density gradient show clearly the smooth inlet

region� the transition to single well formed vortices� followed by a loss of distinct de�nition

and shape� The lack of vortex pairing in any single frequency behavior suggests that di�erent

frequency disturbances traveling at di�erent wave speeds are a primary mechanism in vortex

paring�
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Figure 
��� Comparison of numerical shear layer growth rates� vorticity ��� momentum 
�� and boundary

layer ����

�	�	� Time Averaged Results

Instantaneous to Time�Averaged Comparison

The time�averaged conservative variable �elds are plotted for comparison with the

instantaneous �elds in Figures ���� ���� ���� and ���� The ���			 Hz excitation case was

chosen because it is closest to the Case I most unstable frequency� The density �eld contours

shown in Figure ��� illustrate two key points for con�ned mixing layers� First� the shear

layer involvement with the wall begins early� for this frequency in the 	�� to 	� m distance�

Second� in contrast to the broad spectra excitation simulation� the time averaged �eld is not

smooth and monotonic like a hyperbolic tangent pro�le in the transverse direction� And
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Figure 
�
� Shear Layer Development Comparison for Single Frequency Excitations

�nally� the individual vortices capture pockets or wells of low density �uid that convect with

the vortex� The vortex becomes a protecting mechanism that appears to actually reduce

mixing� The time averaged e�ect is seen clearly in the cross channel pro�le at X � ���m

position�

The growth� peak and then decay process is best seen in Figure ���� Down stream of

the initial peak the shear layer transverse mass �ux di�uses� The shear layer also acts as a

barrier to Mach wave disturbances trapping them in the high speed stream�



��

0.00 0.10 0.20 0.30 0.40 0.50

a) Instantaneous Density ρ

c) Profiles at Constant Axial Stations

b) Time Averaged Density ρ

0.020 0.030

X = 0.36m

0.020 0.030

X = 0.28m

0.020 0.030

X = 0.20m

0.020 0.030

-0.02

-0.01

0.00

0.01

0.02

Density

X = 0.12m

Y

Figure 
��� Conservative Variable Density � �kg�m�� a� Instantaneous Density� b� Time Averaged Density Field� and c� Cross Channel Density

Pro�les at X � ���m� ���m� ���m� and ��m�



��

5 10 15 20 25

X = 0.36m

5 10 15 20 25

X = 0.28m

5 10 15 20 25

X = 0.20m

5 10 15 20 25

-0.02

-0.01

0.00

0.01

0.02

X = 0.12m

Y

Momentum

c) Profiles at Constant Axial Stations

b) Time Averaged Momentum ρu

0.00 0.10 0.20 0.30 0.40 0.50

a) Instantaneous Momentum ρu

Figure 
�� Conservative Variable Axial Mass Flux �u �kg�sm�� a� Instantaneous Mass Flux� b� Time Averaged Mass Flux Field� and c� Cross

Channel Mass Flux Pro�les at X � ���m� ���m� ���m� and ��m�



�	

c) Profiles at Constant Axial Stations

b) Time Averaged Momentum ρv

0.00 0.10 0.20 0.30 0.40 0.50

a) Instantaneous Momentum ρv

-0.20 -0.10 0.00 0.10

X = 0.20m

-0.20 -0.10 0.00 0.10

-0.02

-0.01

0.00

0.01

0.02

X = 0.12m

Y

Momentum
-0.20 -0.10 0.00 0.10

X = 0.28m

-0.20 -0.10 0.00 0.10

X = 0.36m

Figure 
��� Conservative Variable Transverse Mass Flux �v �kg�sm�� a� Instantaneous Mass Flux� b� Time Averaged Mass Flux Field� and c� Cross

Channel Mass Flux Pro�les at X � ���m� ���m� ���m� and ��m�



��

4000 8000

X = 0.36m

4000 8000

X = 0.28m

4000 8000

X = 0.20m

4000 8000

-0.02

-0.01

0.00

0.01

0.02

X = 0.12m

Y

Energy

c) Profiles at Constant Axial Stations

b) Time Averaged Total Energy ρet

0.00 0.10 0.20 0.30 0.40 0.50

a) Instantaneous Total Energy ρet

Figure 
��� Conservative Variable Total Energy �et �Joule�m
�� a� Instantaneous Total Energy� b� Time Averaged Total Energy Field� and c� Cross

Channel Total Energy Pro�les at X � ���m� ���m� ���m� and ��m�



��

Time Averaged Fluctuating Quantities

The mass �ux �uctuation and Reynolds stress �elds provide some insight into the

behavior of the shear layer� They also provide possible explanations for con�icting behav�

iors observed by researchers� In Figure ���� cross�channel pro�les of the axial mass �ux

perturbation or turbulence intensity ��u�� show the commonly observed skewed and double

peaked pro�les at axial positions X � 	��	 and 	��m respectively� The broad frequency or

�naturally� excited simulations produce cross�channel pro�les of the skewed shape� Dou�

ble peaked pro�les have only been observed from data �elds which were not time�average

mature or were single frequency excited� Since most experimental data is expected to be

time�averaged stable� the presence of double peaked behavior suggests the possible presence

of a strong single frequency behavior�

The Reynolds stress contour �eld shows the turbulence mixing peaking very early in

the region of rapid shear layer thickness growth� Beyond this region the Reynolds stress

dissipates quickly� Growth in the Reynolds stress appears to lead the occurrence of rapid

shear layer growth� In the downstream region where the Reynolds stress is very weak the

shear layer thickness is nearly constant�
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Comparison with Parabolized Stability Equation Results

Case I conditions were excited using eigenfunction pro�les for ��			 Hz at the inlet

boundary� The axial growth pro�le and the cross channel growth pro�le of the r�m�s pres�

sure perturbation were compared to the experimental and Parabolized Stability Equation

�PSE� results presented by Martens et al� ����� In Martens et al� ���� Martens
 experimen�

tal results were narrow bandpass �ltered to yield the axial pro�le of the r�m�s� mass �ux

perturbation for a ���			 Hz wave� The �ltered pro�le was compared with the r�m�s� pres�

sure perturbation pro�le produced by Lockard using the stability theory PSE method� The

Parabolized Stability Equation �PSE� results are based on a curve �t of the experimental

mean �ow �eld� The PSE theory produces eigenfunction results for the selected frequency�

Figure ���� displays the �ltered experimental growth pro�le of the axial normalized

mass �ux perturbation� the PSE growth pro�le for p� normalized to match the experimental

pro�le
s magnitude� and the simulation p��pmean and the normalized mass �ux perturbation

pro�les produced by the single frequency eigenfunction excitation� The PSE and �ltered

experimental results show agreement as to the axial location of the peak disturbance� The

PSE results are� of course� based upon the full frequency range experimental mean pro�

�le� The ��			 Hz eigenfunction excited shear layer simulation computes both the single

frequency mean pro�le and the perturbation �eld� The simulation shows the pressure per�

turbation peaks 	�	� m before the experimental results� The di�erence could be attributed

to two possible sources� �� the in�uence of broad frequency content of the experimental �ow

on the mean pro�le and �� simulation error in computing the shear layer mean �eld� The

di�erences in the peak perturbation magnitudes are attributed to the excitation magnitudes

in the experimental �ow and the simulation� The mass �ux perturbation of the simulation

shows a continuing rise through several peaks� This mass �ux behavior is in agreement with

the PSE mass �ux results ����� The cause of the variation from the experimental pro�le of

Martens is not known�

The cross channel pro�les were compared at the 	��� m axial location� see Figure ����

The pro�les show generally good agreement� In this �gure 	�		� m has been added to

the simulation pro�le� shifting it towards the high speed stream� The shift amount of

	�		� m was determined based upon the velocity pro�le comparisons shown in Figures ����

and ���� The simulation and PSE pressure pro�les compare well in shape� The di�erence
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in magnitude is attributed to the simulations excitation strength� The mass �ux pro�le does

not compare well in shape due to the dominant single frequency behavior of the simulation�

The magnitude di�erence is due to the elevated perturbation levels of the simulations at

frequencies near the dominant disturbance frequency�

Single frequency simulation of the Case I shear layer conditions has produced results

that compare well with stability theory and experimental results� within explainable dif�

ferences� A more thorough discussion of the cause for the di�erences shown by the mass

�ux perturbation are presented in the next chapter� Closer comparisons would require far

greater precision in the coordination of �ow conditions for each of the three research meth�

ods in order to produce exact comparisons� The comparisons establish� for this research� a

consistency between the di�ering research methods�
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Chapter �

Shear Layer Simulation Case I� Mc � ���

The results of the numerical simulation of Case I conditions at a convective Mach

number of 	�� are presented and compared to Martens
 experimental results� Issues ad�

dressed begin with the e�ectiveness of unsteady in�ow boundary conditions in providing

a �natural� in�ow condition� The ability of the simulation to produce realistic dynamic

behavior in terms of frequency spectrum and associated auto�spectra and their comparison

with experimental results are assessed� The growth rate of the shear layer is discussed and

numerical rates are compared with experimental values� Possible sources of any di�erences

are addressed� The instantaneous solution of conservative solution variables are presented

in two and three�dimensional forms to aid in gaining insight into the �ow
s and�or simula�

tions behavior� Time�averaged data are presented in contour plots of the solution domain

and cross�sectional pro�les for examining the steady behavior of the solution� The mean

velocity pro�les are plotted against Martens velocity pro�le data at six axial locations�

Time�averaged mass �ux �uctuations and Reynolds stress are compared with experiment�

The e�ect of normalization on pro�le shape and peak magnitude are discussed� The capa�

bilities of the simulation as well as points of deviation from the experiment are discussed�

The ability of the simulation to model dynamic growth of the shear layer is examined by

comparison between analytical results from Martens and Lockard et al� ���� and a single

frequency eigenfunction forced solution� The simulation was solved in physical units and

all data are in the MKS system unless otherwise noted�

��� Dynamics

Frequency spectra analysis has historically been used as a basic tool in the inves�

tigation of shear layer behavior ��	� ��� ���� Early work by Oster and Wygnanski ����

investigated the frequency behavior of shear layers in both natural or unforced and forced

layers� They investigated a variety of e�ects such as the in�uence of excitation on mixing

layer growth rates and the cascade of frequency �energy� with spatial evolution of a mixing
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layer� They found that small amplitude excitations of negligible energy cause increased

growth rates� but� at large amplitudes the �ow resonates with the frequency of the excita�

tion� The amplitude at which an excitation frequency begins to force resonance in the shear

layer is of critical importance to a numerical simulation� Physical �ow variables do not

have the steadiness of numerical constants and therefore inlet boundary conditions must be

perturbed� They must be perturbed in such a way as to mimic the real variable behavior

and avoid any excitation resonance� A few researchers have begun to use frequency spectra

in the analysis of numerical simulations ��� ���� Oster and Wygnanski also showed the

basic cascade of energy from high frequencies to lower frequencies as the shear layer evolves

spatially� These basic behaviors remain consistent until three�dimensional e�ects start to

become dominant ����� Of the two �ow conditions simulated� Case I conditions fall in the

two�dimensional region but Case II conditions are at the lower edge of where the shear

layer begins to develop three�dimensional e�ects� Numerical simulations must be able to

reproduce these behaviors accurately�

The ability of the simulation to reproduce the dynamic behavior of the experimental

conditions accurately was examined by sampling the mass �ux and analyzing the frequency

spectrum and auto�spectra of the data� Martens used the method of Kistler ��� and Ko

et� al �� to determine the �uctuation calibration of his hot�wire� The calibration equation

was expressed as

e�

E
� Am

��u��

�u
�AT

T �

	

T	
�����

where Am �
h
�u

E
�E
��u

i
for T	� and Twall constant and AT � �

h
T 	

E
�E
�T	

i
for �u and Twall con�

stant� The second term was dropped as immaterial based on the work of Ko et� al ��� who

found that total temperature variations less than "� Martens determined the coe�cient

Am of the �rst term from hot�wire calibrations in an atmospheric jet� The �nal total mass

�ux equation used by Martens was given by

m� �
�

Am

e�

E
�

��u��

��u�
�����

The experimental time history data was collected with a hot�wire probe that measured

the mass �ux of the air stream normal to the hot wire not just the axial component� The
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total mass �ux for both the experiment and the simulation are de�ned as the local ��V ��

where V �
p
u� � v�� The total mass �ux histories were recorded at the inlet and two axial

locations 	��� m and 	��� m�

�	�	� Frequency Behavior and Auto�spectra

Inlet Conditions

The total mass �ux at the in�ow boundary was sampled to investigate the ability of

the unsteady boundary conditions to produce a white noise stimulation to the �ow� The

frequency spectra of the total mass �ux perturbation ��V �� � ��V � � ��V � produced at

the inlet is shown in Figure ���� The spectra is fairly uniform in magnitude across the

range of frequencies of interest� The frequency spectra were determined from the discrete

Fourier transform of the total mass �ux time history� Martens made �informal� estimates of

the power spectral density in the shear layer by taking the modulus�squared of the discrete

Fourier transform� i�e� the auto�spectra of the total mass �ux perturbation time history �����

The auto�spectra of the inlet signal shows that the power is evenly distributed across the

frequency regime� The design intent in the development of the inlet perturbation method

was to avoid the addition of power into the �ow at the fundamental frequency or any of its

subharmonics� As desired� the power distribution of in�ow unsteadiness is roughly uniform

and does not have any unusually large spikes in the range of interest� The bene�t of this

in�ow excitation method is its relative simplicity and simple ties with experimental data�

Downstream Behavior

The unsteady behavior produced by the in�ow conditions compared well with experi�

mental results� both qualitatively and quantitatively� The anticipated shape of the frequency

spectra was a roughly bell shaped curve with the peak at the most unstable frequency for

the local shear layer thickness� The shear layer simulation produced the anticipated fre�

quency spectra pro�le in both shape and frequency peak location� as shown in Figure ����

The broad peak of the FFT spectra is centered in the high �	 kHz range� in agreement with

the estimated most unstable frequency of �� kHz for the 	��� m downstream location�



��

0 10000 20000 30000 40000 500000E0

2E-7

4E-7

6E-7

8E-7

1E-6

Frequency (Hz)

A
m

pl
itu

de

a)

0 10000 20000 30000 40000 500000E0

2E-15

4E-15

6E-15

8E-15

Frequency (Hz)

A
m

pl
itu

de

b)

Figure ���� Unsteady Inlet Perturbation� ��V ��� Behavior� a� FFT Spectra and b� Auto�spectra�
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Figure ���� FFT Spectra of the Total Mass Flux Unsteadiness ��V �� at X � ���� m�

The power spectra density of the shear layer unsteadiness is given approximately by

the auto�spectra of the Fourier transform spectra� Figure �� presents the auto�spectra of

the simulation and experiment at the 	��� m location� The key comparison is that both

auto�spectra show that the peak total mass �ux perturbation energy is at the most unstable

frequency of approximately �� kHz� The large magnitude di�erence between the two auto�

spectra corresponds to an FFT magnitude �wave amplitude� ratio of about eight� The

cause of the magnitude di�erence has not been determined but several possible contributing

factors are as follows� �� the magnitude of the inlet excitation of the simulation� �� the lack

of viscous damping by the Euler damping and � the use of atmospheric �calibration�

of the hot�wire for an experiment at ��		 Pa pressure and �		o K temperature� The

relative magnitude of these e�ects are unknown� Another contributor to the peak magnitude

di�erence between the two auto�spectra is the number of data points averaged into each

curve� The experimental work is based on an essentially unlimited amount of data while

the simulation auto�spectra is based on only �	�� data points� An increased number of

data points would average out high peaks moving the auto�spectra closer to its stationary

average pro�le�
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Figure ���� Auto�spectra of the Total Mass Flux Unsteadiness at X � ���� m� a� Simulation and b�
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Figure ��
� Normalized Auto�spectra of the Total Mass Flux Unsteadiness at X � ���� m�

Normalized versions of both auto�spectra are plotted in Figure ��� to allow closer

comparison of the power spectra� Again� the simulation agrees with the experiment by

showing the peak power magnitude occurs at the most unstable frequency of the shear

layer� The simulation does show more energy at very high frequencies above � kHz than

the experiment� Since viscous dissipation has its greatest e�ect at the small scales of high

frequencies� the lack of viscosity in the solution is considered the most probable cause� The

experimental auto�spectra shows high levels of energy at low frequencies below �	 kHz�

High energy levels at unexpectedly low frequencies are typically attributable to facility

or instrumentation vibrations� However� the precise cause of high energy levels at low

frequencies has not been determined� Overall� the FFT and auto�spectra pro�les show the

ability of the Euler simulation to predict the shear layer dynamic behavior� The shape of

the FFT spectra suggests that the power spectral density pro�le can also be predicted with

larger data sets from simulations�

The simulation shows equally good results at the 	��� m downstream location� The

FFT spectra in Figure ��� shows the cascade to lower frequencies� The shear layer grows

thicker due to increasing spatial oscillations with axial distance and at some point vortex
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Figure ���� FFT Spectra of the Total Mass Flux Unsteadiness ��V �� at X � ���� m�

pairing begins� Both of these mechanisms� spatial oscillation growth and vortex pairing�

cause the structures to decrease in frequency� The peak frequencies are predicted correctly

at the local most unstable frequency of about �� kHz� At this downstream location the

cascade of energy is producing more large amplitude waves in the low frequency range

below �	 kHz�

Figure ��� presents the auto�spectra of the simulation and experiment at the 	��� m

location� Both auto�spectra show equal shifts to lower frequencies� The simulation shows a

peak energy at the anticipated �� kHz most unstable frequency� Similar to the comparison

at the ��� m location� the experimental auto�spectra shows a slightly lower frequency for

the peak energy of about �� kHz� Observance of high energy at low frequencies as seen at

the ��� m location is obscured by the normal cascade of energy into that frequency range�

The simulation auto�spectra shows nearly a two order of magnitude growth from the ���

m location� This growth is consistent with the factor of ten change in magnitude of the

peak FFT spectra� Based on the experimental auto�spectra data� the experimental FFT

peaks grew by only a factor of two� The di�erence in the peak growth rates are contributed

to by the unresolved high frequencies waves and to a lesser extent the absence of viscous
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damping� The unresolved high frequency waves contribute to power redistribution in the

�uid through non�linear interactions� The normalized auto�spectra a plotted together in

Figure ���� The �gures shows that the method correctly predicts the energy cascade trend

and identi�es the local frequency of the dominant large scale behavior but fails to predict

the broader distribution of power�

The FFT and auto�spectra results from the inlet and two downstream locations have

demonstrated a good capability of this Euler simulation to predict the shear layer dynamic

behavior� The inlet excitation successfully introduces a white noise excitation to the shear

layer� The resulting �ow �eld reproduces the Kelvin�Helmholtz instability behavior of the

shear layer� The FFT spectra and the auto�spectra demonstrate the ability to predict

the most unstable frequencies along the shear layer and to reproduce realistic frequency

spectra� The primary limitation of the method was its inability to predict the di�use

power spectrum of the experimental results� The simulation frequency spectra and auto�

spectra were calculated from a sample base of �	�� points� The �ne grid inviscid simulation

produced a good simulation of the dynamic behavior of the supersonic shear layer�

��� Instantaneous and Time�averaged Behavior

�	�	� Shear Layer Growth

As discussed previously� the e�ect of con�nement on the Kelvin�Helmholtz instabilities

of the shear layer should be minimal� Therefore� conventional free shear layer thickness and

growth rate methods should apply� There is a multitude of de�nitions and methods of

determining the thickness of shear layers and their attendant growth rates� The most

common de�nitions for shear layer thickness are the visual� the Pitot or velocity� vorticity

and momentum thicknesses� The visual thickness is the shear layer thickness as measured

by observation methods such as schlieren photography� The Pitot thickness� �pit� is the

width of the Pitot pressure pro�le from �" to ��" of the di�erence of the free�stream

values� The vorticity thickness is de�ned by the equation

�� �
!U�

�U
�y

�
max

����
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Figure ��� Auto�spectra of the Total Mass Flux Unsteadiness at X � ���� m� a� Simulation and b�

Experimental
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Figure ���� Normalized Auto�spectra of the Total Mass Flux Unsteadiness at X � ���� m�

The vorticity thickness determined from Equation �� is very sensitive to the maximum

slope of the shear layer� The numerical vorticity thickness was computed directly from

the time averaged variables� The experimental vorticity thicknesses were determined by a

graphical method ����� The momentum thickness is computed based on the compressible

de�nition

� �

Z 
H��

�H��

�

��

�
�U� � u�y���u�y� � U��

�U� � U���

	
dy �����

An additional de�nition� ���� was also compared to the experimental data� The ���

thickness is similar to a velocity thickness and was determined much like a boundary layer

thickness� A similar boundary layer thickness parameter has been used by Clemens and

Mungal ��	� to correlate visual thicknesses from schlieren photographs� The thickness is

de�ned by the following equations

Ulower � U� � 	�	�!U �����
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Three shear layer thickness measurements� ���� vorticity and momentum thickness�

were compared to the experimental vorticity thickness growth� Figure ��� shows the growth

of the shear layer with streamwise distance as measured by these various parameters�

The three thickness measures computed from the numerical simulation bound the

experimental growth pro�le� The ��� method provides the best comparison with the results

of Martens
 graphical method� nearly falling on top of the experimental data� Since the
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Table ���� Shear Layer Growth Rates for Case I

Growth Type d��dx

��� �Boundary Layer� �	��

�� �Vorticity� �	��

�� �Momentum� �	�

�� �Experimental� �	���

experimental pro�les are Pitot data� the associated thicknesses may be more appropriately

classi�ed as Pitot thicknesses� For a hyperbolic tangent velocity pro�le the vorticity and

momentum thicknesses are related by �� � ��� The factor of four relationship between

vorticity to momentum holds well for this con�ned shear layer� The thickness growth

pro�les behave in accordance with free shear layer behavior� Two distinct regions of growth

exist� a region of very slow laminar growth and then a period of very rapid turbulent growth�

Growth rate comparisons in the laminar region are not meaningful due to the large initial

shear layer de�nition and poor velocity pro�le resolution of the numerical simulation� Even

the point of transition is highly dependent upon the degree to which the in�ow boundary

conditions stimulate realistic downstream behavior� The scatter in the experimental data

makes a precise statement of the transition point di�cult� Martens used 	��� m compared

to the very precise simulation transition point of 	��	 m� The turbulent growth region

produced a constant growth rate that extends out to about the 	�� m position� Beyond

this position the shear layer becomes signi�cantly in�uenced by the wall boundary layers�

The simulation results do not show the wall in�uence due to lack of boundary layers in the

inviscid calculation�

The growth rates for the di�erent methods are given in Table ���� The experimental

growth rate reported here was computed independently� As can be seen� the simulation

growth rate ��� is nearly identical to the experimental vorticity growth rate� One source

of the di�erence between the experimental and numerical vorticity thicknesses is the shape

of the velocity pro�le� Figure ��� shows the numerical and experimental pro�les at the

	��� m location� At this location the time averaged velocity pro�les are a�ected by the loss

associated with the unresolved waves and the lack di�usion e�ects due to the absence of

viscosity in the simulation� The relative importance of each factor can not be assessed with

the data available�
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Shear layer growth rate data are correlated with the convective Mach number by the

method of Bogdano� and Papamoschou ' Roshko ��� ��� The convective Mach number is

calculated using the de�nition of Papamoschou ����

Mc �
U� � U�

c� � c�
�����

The growth rates are typically normalized by the incompressible growth rates as determined

by the equation of Papamoschou and Roshko�

��

�x
� C� � ��� r��� � s

�
� �

�� � rs
�
� �

�����

where r � U�
U�

and s � ��
��

and C� is a constant� dependent on the type of thickness used�

The supplementary physical parameters needed to correlate the growth rates and that help
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de�ne the convecting instability waves are given in Table ���� The incompressible growth

rate constants and resulting incompressible growth rates for both �ow Cases I and II are

given in Table ���

Table ���� Supplementary Parameters

Flow Conditions �Units MKS� Case I Case II

Shear Layer

Convective Mn 	��	 	���

Convective Vel ��	�� �����

Di�erence Rey ����� ������

Velocity ratio 	��� 	���

Density ratio 	��� 	��

Table ���� Incompressible Growth Rates

Thickness Type Thickness Coe�cient Incompressible Growth Rate

Case I Case II

�� ��� �	�� �	��� �	���

�Pitot ��� ���� �	��� ��	��

�vis ���� ��� �	�� �	���

�Pitot ���� ��� �	��� �	���

The normalized ��� growth rate is plotted with the experimental growth rate along

with data from other researchers in Figure ���	� The Pitot growth�rate coe�cient by Brown

and Roshko ���� C� � 	���� was used for normalization by Martens and has been used to

normalize ��� in this thesis� The results marked �Martens� were calculated from his Case I

and Case II� Rey��	�			�cm� growth pro�les� The data scatter of the experimental results

can yield di�ering results based upon the precise method used to compute the growth� The

normalized growth rates based on the results given in Table ��� are nearly identical� The

high degree of scatter in this plot suggests that improvements are needed in the growth rate

de�nition or that the convective Mach number may only be a �rst order factor in the data

correlation� The correlation function of Ragab and Wu ���� is included in Figure ���	 to

show the expected correlation behavior�
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�	�	� Instantaneous Results

Conventional Two�dimensional Plot Observations

To obtain the correct time�averaged behavior� such as the growth rate� carries with

it at least the assumption that the dynamic behavior is being simulated correctly� The

density�gradient method of Quirk ���� and the vorticity �eld are useful parameters to begin

the examination of the �ows
 dynamic behavior� Figure ���� shows the Kelvin�Helmholtz

instability growth as the shear layer develops downstream� The modeled portion of the

duct has an aspect ratio of approximately �	 to � and is shown in correct proportion� The

density gradient �eld� Figures ���� a�� gives a schlieren�like visual image of the vortex sheet

and shows vortex pairing and shape distortion� Unsteady structure begins appearing by 	��

meter with a vortex pair �peanut� being clearly visible by about 	��� m� From the 	� m
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position the vortices begin to �atten along the shear layer� The physical size of the vortices

in the shear layer begin to �ll the duct height which impacts the �ow behavior signi�cantly

beyond the of 	�� m location� Beyond the 	�� m position� the now stretched vortices

distort as they try to rotate further� Vortex roll�up pairing is the basic pairing mechanism

at subsonic speeds� while a second mode� slapping� was also observed in simulations by

Oh and Loth ����� The slapping mode consists of vortices traveling at di�erent speeds and

merging upon collision� Oh and Loth state that the slapping mode becomes the predominate

merging process at higher convective Mach numbers�

The role of large scale structures in the shear layer mixing process for high unit

Reynolds number �ows has been questioned by some experimenters� Goebel and Dutton ����

conducted a series of experiments for shear layers at unit Reynolds numbers at ���
�	 and

higher� They found only weak evidence for large scale structures and that only at the lowest

unit Reynolds number conditions� However� Clemens and Mungal ���� suggest that the

di�erence in results may be due to the di�erences in the schlieren visualization techniques

used� The numerical simulation literature reviewed consistently showed the presence of

large scale structures� The unit Reynolds numbers for Case I and Case II conditions are

�
 �	 and ���
 �	 respectively� Both Case I and Case II show the fundamental mixing

mechanism to be the large scale structures�
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Figure ����� Instantaneous Descriptive Flow Parameters� a� Density Gradient Field� and b� Vorticity Field�
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The vorticity �eld displayed in Figure ���� shows a strong line of vortices as they

move along the shear layer� This line of vortices has been credited with being the cause

of the axial mass �uctuations taking on twin peak pro�le across the shear layer� Oh and

Loth ���� have attributed the twin peak structure to the strength of coherency in the large

scale structures� They suggest that as the shear layer looses coherency the shear layer looses

the twin peak form and transitions to a single peak pro�le� The possible causes of the twin

peak behavior are discussed in more detail later when the velocity pro�les are examined in

carpet plot form�

Pseudo��d Examination

The advanced graphics capabilities available today are signi�cant analysis tools in the

development of advanced simulation software� They can change our perspective on physical

problems� The conservative solution variables were plotted in ��D gray�scale contours and

orthographic projections of pseudo �d or carpet plots� The carpet portion of Figure ����

adds a physical feel to the high density areas that build up on the upstream side of each

vortex� The �gures shows that the numerical scheme handles the ���� density ratio at

the inlet very well� But� as the vortex street moves down stream thin strands of the high

speed high density �uid are convected into the low speed stream� These thin ribbons of

high density �uid can quickly exceed reasonable levels� showing possible sources of severe

numerical error� The combination of strong gradients and the need for arti�cial damping

lead to some adjustment of the damping coe�cients� The pseudo�d plots aid in overcoming

data glut by quickly showing features which may not be readily spoted from the conventional

contour plot� The time needed to determine the correct levels of damping was greatly aided

by the ability to easily see spikes in a variable
s behavior� The other conservative variables

did not exhibit the type of severe spike behavior present in the density �eld�

The con�ned �ow plots contribute a degree of physical feeling to the �ows involvement

with the wall� Conventional line contours of density� such as given in Figure ����� show

involvement with the wall as early as x � ��m� The pseudo�d �gure gives a better physical

feel� Wave like �uctuations in density along the walls were �rst described as �strange waves�

by Papamoschou ����� Papamoschou observed wall�to�wall banding in schlieren photographs

of compressible shear layers in a two�stream supersonic wind tunnel� He hypothesized
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that these waves were caused by interaction with the test section walls and the supersonic

shear layer structure� He added that the lack of observed waves for cases having subsonic

convective Mach number supported the hypothesis that they were relates to supersonic

waves in the �ow� He also observed that these strange waves were relatively stationary�

Subsequent researchers� Lu and Wu ���� conducted numerical simulations of supersonic

convective Mach number shear �ows� Based on their �ndings� they state explicitly that the

strange waves exist only for supersonic wall mode �ows� i�e� �ows for which the convective

Mach number is supersonic� However� results from this simulation show that similar banded

structures are present for subsonic convective Mach number �ows� The banding appears

as broad plane waves of compression and expansion� The strength of the waves is directly

related to the degree of interaction with the walls� These strange waves can be seen in the

pseudo�d plot Figure ����� The dark line at the edge of the high density stream should

be straight along the entire length of the domain� indicating constant density� However�

the density at the edge or wall is seen to take on a wavy behavior� Unlike Papamoschou
s

suggestion of the waves being stationary� these waves move with the vortices� The results

of this simulation suggest that the waves are not supersonic wall�mode related� They are

more likely the result of fundamental Kelvin�Helmholtz mode vortices interacting with test

section walls� Observance of the strange waves appears to be comparable to the problem of

schlieren observation of large scale structures in mixing layers�

The axial mass �ux �eld displayed in Figure ��� reveals several vortex pair �peanuts�

at several axial positions� The presence of pairing at numerous locations axially is due

to a broad spectrum of frequencies present in the �ow� As pointed out by Wilson and

Demuren ���� excitation by a single frequency will produce pairing at a �xed axial position�

The transverse mass �ux �eld displays the unique structure of this conservative vari�

able in Figure ����� Coupled positive and negative peaks in the mass �ux �eld are associated

with individual vortices of the shear layer� The locations of the vortices are clearly visible

and the magnitude of the peaks shows the relative vortex strength� The vorticity �eld

displayed in Figure ����� A closeup view in Figure ���� shows that some positive areas

have two peaks� The cause of this multiple peak behavior is not know at this time� Similar

structures exist in the negative mass �ux areas� The presence of twin peak structures of

varying size and shape as well as single peak structures suggests that this local behavior
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may not� and indeed does not� show up in the time�averaged r�m�s� mass �uctuation pro�les

of this simulation�

The instantaneous total energy �eld shows a comparably quiet �ow of energy from the

high speed stream into the low speed stream� Dark centers in each vortex show a process of

low energy �uid being engulfed by the high energy stream� The apparent persistence of the

dark cores in the vortices suggest that mixing within the vortex structure may be a limiting

factor for processes such as fuel mixing and related combustion�

The pseudo�d �gures contribute to an understanding of the instantaneous variable

�elds by adding a dimension of magnitude that is more di�cult to obtain with conventional

contour plots� Each new perspective or form of the data contributes to a more complete

understanding of what the data has to tell us� Comparisons between the instantaneous vari�

ables and their time�averaged �elds helps the researcher understand how the instantaneous

�ow structures produce the mean behavior�
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�	�	� Time Averaged Results

Instantaneous to Time Averaged Comparison

Conventional time averaged data has given global measures of shear layer performance

such as the various growth rates discussed previously� By examination of the time averaged

�eld of a variable and comparing it with the instantaneous �eld insight can be gained as

to the causal behavior� The ability to make such comparisons is unique to numerical sim�

ulations� The contour plots of the conservative variables
 instantaneous and time averaged

�elds along with the cross�section line plots of the time averaged data are displayed in Fig�

ures ����� ����� ����� and ���	� The time averaged density �eld shows occasional points

along the streamwise development where slight but sudden spreading of the contour lines

occur� More notable are the bumps in the cross channel pro�les� These bumps are the time

averaged e�ects of high density ribbons that vortices draw into the low density stream� see

also Figure ����� The density pro�les given in other numerical simulations ��� ��� as well

as experimental results by Brown and Roshko ��� show nearly identical behavior� The axial

mass �ux �elds� Figure ����� show a much smoother pro�le indicating the velocity contri�

bution dominates the conservative mass �ux variable� The comparison of transverse mass

�ux provides the greatest amount of information about how time averaged or stationary

structures interact with the instantaneous �eld� Figure ����� Early disturbance growth is

shown to produce Mach waves at a �xed position in the time averaged �eld� The Mach

waves are most readily observed in the Transverse mass �ux �eld but can be found in the

data of all the variables� The relatively small magnitude of the Mach wave disturbances

makes their observations di�cult for the other variables� The Mach waves move out from

the shear layer� re�ect from the walls then hit and excite the shear layer at the 	��� m

location� Subsequent wall re�ections of the Mach wave system produce multiple peaks or

islands of high transverse mass �ux along the axial direction� The energy captured by the

con�ning walls is fed back into the shear layer growth by periodic stimulation of vortex

growth� However� this e�ect is weak as evidenced by the negligible e�ect shown on the

growth rate pro�le of Figure ���� The predominately negative sign of the mass �ux indi�

cates a net �ow of mass from the high density stream into the low density stream� The

total energy pro�les of Figure ���	 show smooth behavior similar to the axial mass �ux



��

�elds� Two notable di�erences are the thinner time averaged shear layer thickness and less

distinct vortex structures in the instantaneous contours� The vortices are less well de�ned

on the low energy side of the shear layer� Finally the energy pro�les across the shear layer

are very smooth indicating a smooth cascade of energy from one stream to the other�
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Comparisons between instantaneous �elds of the conservative variables and the time

averaged �elds have led to several new observations about shear layers� First� density

appears to be an accommodating factor in the transfer of energy from one stream to the

other� Second� shear layer con�nement does cause energy feed back into the shear layer and

the stimulation of vorticity� Finally� the signi�cance of the feed back energy to the shear

layer growth rates can not be assessed without more direct investigation�

Time Averaged Comparison With Experiment

Computed shear layer results have been compared to the experimental results with

overall good agreement� The results compare well with the experimental data without

the need for a virtual origin shift� The inlet treatment yields an in�ow disturbance that

produces down stream behavior that compares well with the experimental data�

Of the numerous inlet perturbation parameters� the ghost cell treatment and the

addition of v� perturbation were found to be the most in�uential in causing the shear layer

to grow at the experimental rate� The ghost cell treatment ensured the smooth gradient

behavior of the inlet boundary variables� The v� perturbation was set at a magnitude of

	��u� with the phase at �	o to u�� The v� perturbation conditions were based upon plane

mixing layer experiments �����

The experimental data at the 	��� m position show the presence of a strong splitter

plate wake� The e�ect of the splitter plate wake pro�le on the shear layer and its growth

has not been well explored� Some early research ���� has shown that for subsonic shear

layers the inlet wake shape signi�cantly a�ects the symmetry of the shear layer growth and

yet most numerical simulations continue to use the hyperbolic tangent pro�le successfully�

The spreading of the shear layer is shown in Figure ���� by a plot of the velocity

pro�les at eight axial locations� The high speed �energy and density� also� stream is shown

spreading into the low speed stream� The locations were chosen to show the progression of

the shear layer growth at positions where experimental data were available� Figures ����

and ��� present comparisons between computed mean velocity u� shown by the solid line�

and experimental mean velocity pro�les from Pitot probe data� shown by the symbols� The

data and computed pro�les are �as given� and have not been adjusted to correct for inac�

curacies in the experimental shear layer
s position or the inlet hyperbolic pro�le placement�
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The pro�les compare closely over most of the length for which data are available� The

comparisons of the shear layer thickness and maximum gradient of the velocity between ex�

periment and simulation deteriorate beginning at the 	�� m location� The lack of di�usion

from viscosity in the simulation is believed to be the primary cause of the persistent steep

velocity gradient across the shear layer� As the downstream distance grows the shear layer

becomes in�uenced by the walls� Figure ��� shows that the wall boundary layers begin to

merge with the shear layer at 	��� m distance�
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The comparisons that have been made between the simulation results and the exper�

imental data have been good but not perfect� The time�averaged velocity pro�les� and the

shear layer thickness growth compare well to a point but the comparisons do not give a lot

of insight as to the source of the di�erences� The auto�spectra of the simulation show the

power in the unsteady mass �ux �uctuations are con�ned to narrow frequency bands� The

auto�spectra of the experimental data show a much lower levels of power that are distribu�

tion over a much broader range of frequencies� The comparison suggests that the di�erences

may be based in the simulation of the �uctuating behavior�

Fluctuating Quantities

The simulation results have compared well with most of the experimental data for both

dynamic and time averaged data� Four�way comparisons between the broadly excited and

the single frequency excited results of both simulation and experiment were also conducted�

The �uctuating behavior of the �ow was examined by comparison of Martens
 mass�velocity

�uctuation data with the equivalent simulation quantities� Large di�erences were found

between the experimental and simulation pro�les of the mass�velocity �uctuations� The

dynamic comparisons� in particular the auto�spectra comparisons� have suggested that the

di�erences are related to the ability of the simulation to predict the distribution of power

over an increasing range of frequencies� The impact on the shear layer thickness growth

appears to be signi�cant� Addition study will be necessary to establish the precise cause of

the simulations con�ning of energy in a narrow bandwidth of frequencies� The �nal part

of the study of the �uctuating quantiles looked at the axial mass �ux rms �uctuations�

transverse mass �ux �uctuations� and the Reynolds stress �elds� These �elds have similar

behaviors to turbulence intensity results being reported by other researchers� Examination

of the �elds has suggested possible explanations for con�icting trends being reported�

Martens
 rms mass�velocity �uctuations are de�ned by Martens as ��u��rms���u�local�

The experimental parameter and the simulation parameter are compared at four axial lo�

cations� The results are shown in Figure ����� The pro�les show signi�cant di�erences

between the experimental results and the simulation values� Three types of di�erences are

observed� �rst� is the large di�erence in the peak magnitudes� second the general shape of

the pro�les� and third the di�erence in trends of the peak magnitudes with axial distance�
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The precise causes of the di�erences are not known but several observations point to some

possible explanations�

The large di�erences in the peak magnitudes of simulation and experiment data may

be due to two possible causes �� over excitation of the inlet and �� the focus of unsteady

power in a narrow frequency range� During development of the simulation attention was

focused on the e�ect of the inlet perturbation magnitude on the growth of the shear layer

thickness and not so much on the magnitude of the subsequent �uctuation �elds� The inlet

disturbance magnitudes are on the order of a few �	ths of a percent of the variable
s local

value� nearly an order of magnitude less than the �uctuation levels shown in Figure �����
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Consequently� a direct connection between the inlet disturbance and the downstream �uc�

tuation levels is not considered the primary cause� Examination of the second potential

cause focuses on the narrow frequency range in which most of the simulation
s unsteady

power is contained�
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The four�way comparison of the auto�spectra are shown in Figure ����� The broad�

band� and single frequency excited simulations as well as the single frequency excite exper�

imental data show concentrations of power in very narrow frequency bands centered at the

locally dominant frequency� The naturally excited experimental auto�spectra has a much
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broader frequency distribution of power� The peak amplitude of power is also several or�

ders of magnitude small that the peaks show for the simulations and the single frequency

excited experimental case� The peak power levels were also evident in the rms mass��ux

perturbations�

The several key observations can be made from the four�way comparisons of the rms

mass��ux perturbations� The �rst observation is the signi�cantly higher peak magnitudes

of the three data sets exhibiting power concentration near the dominant frequency� The

observation of the higher peak magnitudes for the �rst three data sets show agreement

with the auto�spectra grouping of these three data cases� In contrast� the twin peaked

pro�les in the single frequency excited simulation and experiment and in the naturally

excited experiment show a similarity in these three processes that is di�erent from the

perturbation magnitude issue� Another compare and contrast type observation is made

for the two simulations cases and the two experimental cases� The simulation cases have

very di�erent shaped perturbation pro�les and yet have auto�spectra that are visually very

similar� Again� in contrast� the experimental cases have visually very similar perturbation

pro�les while their auto�spectra are very di�erent� The �nal observation is the very narrow

and nearly constant shear layer thickness with axial distance for the single frequency excited

simulation� All of the questions raised by these observations point back to the desire to

understand the mechanisms the in�uence the shear layer growth�

The shear layer thickness growths for the four cases are compared in Figure ����� From

Figure ����� similarity is seen in the growth behavior for three cases that have narrow power

bands� And yet the simulations have obvious similarities such as the transition point for

the laminar to turbulent growth� The experimental growth pro�les also have similar shapes

in their rapid growth region� These growth pro�les suggest the narrow concentration of

perturbation power may be the key to enhanced shear layer mixing� The perturbation and

Reynolds stress �elds� when viewed as contour �elds� also provide insight as to factors that

in�uence research �ndings from both numerical and experimental research�

Finally� the mass �ux perturbations and Reynolds stress �elds are displayed in Fig�

ure ����� Figure ���� and Figure ��	� The mass �ux perturbations ��u�� and ��v�� �elds

have contour �elds that resemble turbulence intensity �elds� Study of these �elds will

contribute to our under standing of the shear layer behavior and maybe of the associated
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turbulence �elds� The axial mass �ux perturbation grows to a maximum and then holds a

constant contour shape and magnitude� The transverse mass �ux perturbation has a similar

growth pattern� it grows quickly until about X � 	��� m and then remains approximately

constant throughout the remaining length of the duct� By comparing the rms perturbation

and time averaged �elds of the transverse mass �ux variable two very di�erent behaviors

are observed� The time averaged �eld of Figure ���� shows a strong interaction with the

walls� The impact of the wall interaction is much smaller on the rms perturbations shown

in Figure ����� The Reynolds stress �u�v� shows a repeating process of growth and decay�

ing very similar to the time averaged transverse mass �ux �eld contours� The growth and

decay process occurs several times within the length of the computational domain� Several

conclusions can drawn from all the observed behaviors as to their di�erent causes�
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The observations made from the perturbation behaviors seem to concentrate into

three general conclusions� First the wave resolution in the research domain is critical the

quality of the data� The natural �uids of experiments admit waves down to extremely small

wave lengths� This admittance is key in providing the small scales necessary for non�linear

interactions to distribute power over a broad range of frequencies� The redistribution of

energy by high admittance also allows small scale behavior to cloud single behavior� The

second conclusion is that the power and associated perturbation magnitude are the key

factors in the early onset of high�early turbulent growth rates� The �nal observation is that

the domain of the simulation or experiment signi�cantly contribute to the �ow �eld and the

associated �nding from data obtained� Hard re�ecting and con�ning walls can and do add

energy back into the shear layer� a�ecting the growth� Special insights can also be obtain

from simulations that are impossible to obtain experimentally� The two investigations of

the next section provide such insights� �ow behavior as seen from a convecting frame of

reference and the location of entropy generation in the shear layer�

�	�	� Special Topics

Direct simulations of �uid processes have many advantages over conventional exper�

imental data collections� The advantages generally stem from the ability to capture the

complete set of conservative variables throughout the simulation domain� In addition�

the ability to record various forms� such as instantaneous� time�averaged and perturbation

forms� allow the �ow behavior to be investigated from many di�erent perspectives includ�

ing di�erent frames of reference� Two investigations were conducted to look at the �ow

behavior to obtain information that is not possible with today
s experimental capabilities�

The �rst investigation compares the �ow behavior in small section of the shear layer as

seen from a stationary and a moving frame of reference� The second investigation looks at

the contribution of non�isentropic processes to the overall density perturbation in the shear

layer�

Convecting Large Scale Structures

Papamoschou discussed in several of his publications ��� ��� an idealization of com�

pressible shear layers in the reference frame of the large scale structures� The hypothesis
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speci�ed that� in a frame of reference moving at the convective velocity of the instability

wave� a saddle type of stagnation point occurs between adjacent vortices� Earlier work

in which� Bogdano� ��� and Papamoschou ��� had developed a relationship between the

convective Mach numbers of each stream� Mc� and Mc�� The isentropic model they de�

veloped yielded a relationship between the convective Mach number of the two streams�

Mc� �
p
����� Mc�� where � is the speci�c heat ratio� The convective Mach number

relation was obtained by requiring equality of total pressures of the two streams in the con�

vective frame� The equity of pressures occurs at the stagnation point between large scale

structures in the convective frame of reference� Since experimental illustration is di�cult�

the concept is illustrated here with a vector plot of a large scale structure in the convective

frame of reference �u � Uc� and the same large scale structure as seen from the station�

ary reference frame by viewing the transverse velocity �eld v� Figure ��� shows the large

scale structure of the compressible shear layer in both convecting and stationary frames

of reference� The �ow structures appears to conform to the original hypothesis reasonably

well�

Isentropic and Non�Isentropic Density Perturbations

Inviscid �ow without heat sources or conduction� as governed by the Euler equations�

describes isentropic �ow in the absence of discontinuities� However� the Euler equations do

admit entropy producing discontinuities such as vortex streets� contact surfaces and shocks

in supersonic �ows� The vortex street and large density gradients are the primary sources of

entropy production in the shear layer simulation� The instantaneous density perturbations

about the mean �eld were investigated to identify the relative contributions of isentropic

and non�isentropic processes�

The investigation begins with the standard decomposition of the density and pressure

variables into their time averaged and perturbation parts� The density perturbation is thus

expressed as �� � ���� A second equation for the perturbation of density and pressure can

be found beginning with the equation for entropy change from a reference state

s� sA � cv ln

�
p�pa

����A��

	
����	�
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Transverse Velocity Field v in Stationary frame of Reference�
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By di�erentiating and expressing the di�erentials in prime notation yields

�� �
p�

c�
�

�

cp

�
s� ������

The �rst term on the right hand side of Equation ���� is the reversible or isentropic con�

tribution to the density perturbation� The non�isentropic density contribution was found

from the di�erence between the computed density and pressure contributions� Contour plots

of the density perturbation� pressure contribution and the entropy contribution �elds are

shown in Figure ���� The isentropic contributions by the pressure perturbations are shown

as a minor contributor to the overall density perturbations� The vorticity is the dominant

contributor� Three additional non�isentropic processes can contribute to the contours of

Figure ��� c�� Crocco
s form of the equations of motion give by

���v
�t

� ���v 
��� � � T
��r s���rH ������

shows possible contributions from the velocity change with time� the vorticity
��
� � and the

gradient of the total enthalpy H� The gradient of the total enthalpy does not contribute for

these simulations since the total enthalpy of the streams are equal� The change of velocity

with time contributes to the cross�channel gradient of entropy as does the di�erence in

entropy between the two streams at the inlet� Both the velocity change and the initial en�

tropy di�erence contribute as the mean density and velocity �elds develop with downstream

distance� The ratio of entropy levels of the two streams at the inlet is approximately three�

The processes that generate entropy change in the shear layer are same processes that

de�ne the shear layer behavior� For Case I conditions both the �uid dynamic behavior

and the entropy generation processes are two�dimensional� Three�dimensional processes

become important and contribute signi�cantly to the shear layer behavior and the generation

of entropy as the convective Mach number increases beyond 	��� The three�dimensional

simulation results discussed in the next section only con�rm the dominant two�dimensional

nature at Case I �ow conditions� The key di�erence between Case I conditions and Case

II conditions is the slightly three�dimensional behavior expected at the higher convective

Mach number of Mc � 	���� The three�dimensional behavior of the Case II shear layer

is su�ciently small that the two�dimensional simulation can yield a good prediction of
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contributions�

the shear layer
s behavior� Consequently the non�isentropic processes and their relative

contributions to the shear layer are approximately the same for these Case I conditions and

the Case II conditions that are discussed in the next chapter�
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��� Three�dimensional Simulation of Case I

The Case I shear layer behavior at Mc � 	�� is generally considered two�dimensional

but some aspects of the �ow such as turbulence are know three�dimensional phenomena�

In addition� oblique Kelvin�Helmholtz waves are known to begin appearing at convective

Mach numbers above 	��� The Case I shear layer was computed using a three�dimensional

simulation to examine the ability to predict the shear layers behavior on what in three�

dimensions is now a course grid� The results were compared to the two�dimensional results

to compare accuracy and to look for early signs of three�dimensional behavior� The basic

�nding is that the lost in grid resolution destroyed the ability to quantitatively predict

even mean behaviors� Although quantitative accuracy was lost trends appeared to remain

consistent with the two�dimensional results� No three�dimensional e�ects were observed but

then no reliable �D results were expected given the general loss of accuracy that occurred�

The most notable di�erences a�ecting how the simulations were performed are the number

of grid points� the resulting wave resolution level and the relative time history of the data�

These di�erences all contribute directly to the accuracy that is achievable in the simulation�

The rapidly growing ability to compute large numerical simulations is forcing the

improvement of our understanding of accuracy in numerical simulations� Accuracy is no

longer just grid independence for the mean �ow behavior� Accuracy now includes the

ability to predict the dynamic behavior of the �uid and the transmission of waves� both

magnitude and phase behavior� The ability to resolve waves in the two�dimensional and

three�dimensional simulations of this thesis is shown in Table ��� Redistribution of the grid

to span the experimental domain resulted in large reductions in the resolved frequencies�

To obtain accurate resolution of waves to the highest possible frequencies the simulation

of Case I conditions was extended to a three�dimensional computation using the largest

possible grid� The grid was expanded within limitations of maintaining cell aspect ratios

and multiples of �N in each matrix dimension� The �nal grid �lled ��" or ��� Gigabytes of

the largest partition ���� nodes� of the NCSA CM�� that provided su�cient available run

time�

The role of parallel processing becomes acutely apparent for the three�dimensional

system� The two� and three�dimensional grids contain �����	� points versus ��������	
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points� a ratio of almost � to ��� The associated computing speeds were ���
 �	� seconds

per point per solution time step and ��	
�	� seconds per grid point per solution time step�

for the two�dimensional and three�dimensional codes respectively� This �" improvement

in speed per grid point only reduced the computation time to �� times larger than the

two�dimensional simulations� The time duration of the three�dimensional simulation runs

were necessarily reduced� The e�ects of the resolution loss by extending the simulation to

three�dimensions are shown in both the dynamic and time�averaged results�

�	�	� Dynamics

Frequency Behavior and Auto�spectra

Frequency spectral analysis was used to look for any shift in frequency behavior due

to the change to a three�dimensional simulation� As with the two�dimensional simulation

the time history of the total mass �ux was recorded at a down stream location� In addition�

the spanwise mass �ux �w was recorded to detect the presence of spanwise waves that might

indict the presence of oblique Kelvin�Helmholtz waves� The inlet excitation levels for u� and

v� were adjusted to give the same white noise behavior and energy levels that were used in

the two dimensional simulations� Overall the amount of energy in the inlet perturbations

increased by the amount of energy added by the w� perturbation�

The frequency spectra and auto�spectra for the two� and three�dimensional simulations

and the experiment all compare well� The simulations correctly predict the energy spectrum

peak at �� kHz� which is in good agreement with the experimental results� The three�

dimensional simulation frequency spectra and auto�spectra at the 	�	 m axial position are

shown in Figure ��� Study of the frequency spectra and auto�spectra show that the two�

and three�dimensional codes do a good job of predicting the major frequencies present such

as the local Kelvin�Helmholtz instability frequency� The three�dimensional simulation does

predict the cascade of energy but not the distribution energy across the frequency range of

interest� The simulation FFTs and auto�spectra shown here are based upon a data sample

of ��� points�

The frequency spectra and auto�spectra of the spanwise mass �ux was also analyzed in

order to identify any organized spanwise frequencies that might be developing and taking en�

ergy from the shear layer growth process� The spanwise frequency spectra and auto�spectra
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at the 	�	 m position show no frequency preferences and only negligible power levels as

can be seen in Figure ���� Overall the analysis did not detect any three�dimensional e�ects

at Case I conditions� The lack of any preferred frequency behavior does not necessarily

mean that the spanwise mass �ux does not play a role in shear layer development� One can

speculate that the ��w�� mass �ux provides an energy sink mechanism to the shear layer�

uniformly absorbing energy from small scale turbulence� The time�averaged �eld would

remain at or near zero and no preferred frequencies would be observed until reaching some

threshold indicator� such as Mc � 	���

�	�	� Instantaneous and Time�averaged Behavior

Shear Layer Growth

The three shear layer thickness measurements� ���� vorticity and momentum thickness�

were again compared to the experimental vorticity thickness growth� The three�dimensional

simulation shows a delayed transition to the turbulent growth rates when compared to the

experimental data and the two�dimensional simulation� The three�dimensional simulation

predictions in Figure ��� show the growth pro�les with more gradual transitions to tur�

bulent growth rates� The delayed transitions depict a 	�	� m lag in onset of the turbulent

growth region� The delayed transition is believed to be due the the much courser resolution

of the shear layer near the inlet� The transition to turbulent growth is more gradual than

in the two�dimensional pro�les� but� the �nal growth rates are actually sightly higher� The

ability of the simulation to predict a transition from laminar to turbulent growth suggests

a basically sound simulation mechanism� Accurate simulation of the disturbance growth

in both the laminar and turbulent regions may depend upon a critical ratio of disturbance

amplitude to grid spacing�

While the three thickness measures computed from the numerical simulation do not

bound the experimental growth pro�le� their growth rates do� The ��� method provides

the highest growth rate� about ��" higher than the experimental rate� The vorticity and

momentum thicknesses follow closely together at a lower rate than the experimental value

but much closer than predicted in the two�dimensional simulation� The computed values for

the three types of growth rates are given in Table ��� along with the restated experimental

growth rate�
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Table ��
� Three�dimensional Shear Layer Growth Rates for Case I

Growth Type d��dx

��� �Boundary Layer� �	���

�� �Vorticity� �	���

�� �Momentum� �	���

�� �Experimental� �	���
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The normalized ��� growth rate for the three�dimensional simulation has been added

to the normalized growth rate plot in Figure ���� The causes for reduced accuracy of the

predicted growth rate are attributed to the reduced grid resolution of the shear layer and

the smaller region of linear growth from which to determine the rate�

Instantaneous Results

Conventional Two�dimensional Plot Observations

The descriptive parameters density gradient and vorticity are shown in Figure ��� at

the same scale as used for the two�dimensional simulation plots of Figure ����� The density

gradient and vorticity plots show that the same basic �ow structures� such as vortex roll up�

are present in both simulations� Comparing just the 	� to 	�� m portions of the �gures from
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the two simulations show that the shear layers are visually very similar� The most de�ned

di�erences are the diminished presence of the vortices in the 	�� m region� This diminished

presence is directly attributed to reduced grid resolution in the early shear layer region�
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Figure ����� Three�dimensional Instantaneous Descriptive Flow Parameters� a� Density Gradient Field� and

b� Vorticity Field�

Time Averaged Results

Instantaneous to Time Averaged Comparison

The plots of the instantaneous and time averaged conservative variables for both

simulations were examined for di�erences� Both simulations were found to show all of

the same basic features� Key di�erences between the plots are the evidences of reduced

early coherence and diminished mass �ux transfer into the low speed stream� The density

pro�les of Figure ��� show the (bump
 in the density pro�le near the edge of the low

speed stream but the three�dimensional simulation does not show the early coherence in

the shear layer that is evident in Figure ���� of the two dimensional simulation� The most

pronounced di�erence in the axial mass �ux pro�les is the signi�cantly reduced spreading

of the shear layer pro�le� The transverse mass �ux plots provide the most new information�

The delayed shear layer growth provides a longer inlet region where the Mach wave behavior

can be observed� The three�dimensional simulation plots show two events of Mach waves

exciting vortices in the shear layer� The second large Mach wave to shear layer interaction
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appears to trip or stimulate the shear layer into its rapid growth region� This interaction

appears to be a major shear layer growth or excitation mechanism� This interaction also

raises important questions about� the di�erences between con�ned and uncon�ned shear

layers� and their growth mechanisms� and about how they are experimentally investigated�

The two dimensionality of the Case I �ow conditions are substantiated by Figure ����� the

spanwise mass �ux �w� With no spanwise driving mechanism� the initial inlet excitation

quickly disappears� The total energy plots show the reduced cascade of energy into the low

speed stream� Examination of the contour plots of the conservative �eld variables� both

instantaneous and time averaged� and cross�sectional plots of the time averaged plots have

emphasized the two dimensional nature of the Case I conditions� The comparisons have

also identi�ed the signi�cant contribution of re�ected Mach wave energy to the growth of

con�ned shear layers�
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Time Averaged Comparison With Experiment

The computed shear layer velocity pro�les were compared with Martens
 velocity pro�

�les� A virtual origin shift of 	�	� m was applied to the simulation pro�les for comparison

with Martens
 velocity pro�les� The shift of 	�	� m was taken from the growth rate pro�les

discussed earlier in this chapter� Comparison was not as good as for the two�dimensional

simulation� Signi�cant conclusions are di�cult to draw from comparisons of the very thin

laminar shear layer region� The slight di�erences noticed are attributed to grid di�erences�

However� two observations can be made about the simulation pro�les at the end of the

domain� i�e� at about 	�� m of the simulation domain� The shear layer pro�le has a slightly

steeper pro�le and the edges of the pro�le are noticeably sharper� One contribution to

these di�erences is that the solution is not as mature as the two�dimensional simulation

and therefore the corners are just not rounded from a long running time average� Over�

all the three�dimensional simulation velocity pro�les do do not compare as well with the

experimental data as does the two�dimensional data�
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Time Averaged Reynolds Stress

The time averaged Reynolds Stress �eld provides useful insight into the shear layer

turbulence �eld� Figure ���� shows that the primary source of disturbances in the shear

layer is the Mach wave system of the high speed stream� The Mach wave amplitudes are

of O��� nearly to the point that turbulent growth begins� The two�dimensional simulation

does not show the Mach waves to be as signi�cant contributors to the Reynolds stress �eld�

Improvements to the simulation need to be made to assess the precise contribution of the

Mach waves to the Reynolds stress �eld and the shear layer growth mechanism�
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Overall the three�dimensional simulation showed little payo� for the greatly increased

computational costs� The three�dimensional simulation did contain all the �ow features seen

in the two�dimensional simulation such as laminar and turbulent shear layer growth regions�

vortex combinations� qualitative consistency from two�dimensions to three�dimensions of

the perturbation quantities such as the Reynolds stress� Unfortunately� as reported by

Ferziger ���� in his paper discussing error in numerical solutions� simulations are known

to be able to predict trends even in the presence of major quantitative error� In the area

of dynamic behavior the three�dimensional solution was able to predict dominant wave

frequencies even if only marginally resolved� quantitative comparisons such as the shear

layer velocity pro�les required the use of an arti�cial o�set or virtual origin to provide

agreement with the experimental data that only rates as acceptable� Three�dimensional

simulations remain challenge for problems that have the large physical domains the size

used in this simulation� and that require accurate resolution of the high frequency level that

were also needed� In contrast� two�dimensional simulations hold an excellent capability to

predict quantitatively the dynamic and steady shear layer behaviors� as long as the dominant

phenomena remains two�dimensional� The following chapter presents the results of a two�

dimensional shear layer simulation under the slightly three�dimensional �ow conditions of

Case II�
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Chapter 	

Shear Layer Simulation Case II� Mc � ����

Compressible shear layers begin to show three�dimensional e�ects when the convective

Mach number is greater than approximately 	�� to 	���� Martens
 second experimental case

and the present� second simulation were conducted at a convective Mach number of 	����

At Mc � 	��� the e�ects should be small and limited to the generation of weak spanwise

waves� Data comparison for Case II is limited since only a small amount of experimental

data is available� The basic �ow conditions for Case II were reported earlier in Table ���

The high and low speed Mach numbers are ��	 and ��� respectively� The in�ow shear

layer thickness was set to 	�		� m� the same thickness used for Case I� The fundamental

frequency was expected to be higher and shear layer growth was expected to be smaller due

to increased compressibility e�ects� Expected behaviors were predicted along with some

enhanced interaction between Mach waves and the shear layer�

	�� Dynamics

�	�	� Frequency Behavior and Auto�spectra

The simulation predicts the delayed growth in the shear layer correctly at the higher

convective Mach number� The dynamic e�ect of the delay is a higher frequency spectra at

a given distance from the splitter plate as compared to the Case I results� The FFT spectra

and auto�spectra are shown in Figure ���� The peak frequency and power levels occur in

the �	 kHz range as compared to �� kHz for Case I� The inlet disturbance algorithm yielded

a driving frequency of ����� Hz� slightly lower than for Case I but still beyond the fully

resolved frequency of grid and numerical systems� The frequency and energy cascade due

to shear layer thickness growth can be seen in Figure ����
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	�� Time�averaged Behavior

�	�	� Shear Layer Growth

The shear layer growth pro�les for the three methods� ���� momentum and vorticity

are compared to the experimental vorticity thickness in Figure ��� Straight lines have been

added to each growth pro�le to aid in examining the pro�les� The early part of the shear

layer has the classic low growth�high growth characteristics� The growth rates in the low

growth region are again not compared to laminar growth rates due to the arti�cially large

simulation initial thickness� The turbulent high growth rates were computed and are given

in Table ���� Interestingly the ��� thickness and momentum thicknesses show decreases in

growth rates of �" and ��" respectively� as compared to Case I conditions� The computed

vorticity thickness remained essentially constant� The behavior of the experimental data

made determining its the correct growth rate di�cult� Several estimates ranged from �	�

to �	�� based on a straight line through the data point at ��� m and one of the several

downstream data points� The largest growth rate computed from the experimental data

was �	�� which is approximately equal to the vorticity thickness growth rate of 	�	� for

the simulation� The relative change in the reported experimental data from the Case I

growth rate of 	�	��� to a Case II growth rate of 	�	� was much larger than expected�

The maximum growth rates� 	�	�� for the experiment and 	�	�� for the simulation� were

normalized with the incompressible growth rate of 	��	�� and compared to other normalized

growth rate data in Figure ���� The results marked �Martens� were calculated from his Case

I and Case II� Rey��	�			�cm� growth pro�les� The simulation results compare favorably

with the normalized growth rate function of Ragab and Wu� The experimental results fall

within the normal data scatter� The second surge in the shear layer thickness pro�les for

the simulation is of particular interest� because of the added mixing that accompanies the

added thickness� It will be shown later that the second surge corresponds to interaction

between the shear layer and standing Mach waves in the solution�
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�� boundary layer ���� and experimentally determined vorticity�

Table ��� Shear Layer Growth Rates for Case II

Growth Type d��dx

��� �Boundary Layer� �	��

�� �Vorticity� �	�

�� �Momentum� �	���

�� �Experimental� �	�
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�	�	� Instantaneous Results

Conventional Two�dimensional Plot Observations

Examination of the density gradient �eld and the vorticity �eld in Figure ��� shows

a much subdued shear layer when compared to the Case I conditions� As discussed before�

the expected results of a higher convective Mach number are decreased mixing and growth�

The point at which shear layer oscillation becomes noticeable occurs at about 	��� m axial

distance� 	�	� m later than the Mc � 	�� shear layer� Despite the delayed growth� the shear

layer displays all the behaviors of the Case I conditions such as vortex roll ups� etc� In these

�gures we see the cause and e�ects of the bulge in the shear layer thickness pro�les� Notice

that the vortices in the region between 	� and 	�� m axial distance have an unusually

uniform size�
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�	�	� Time Averaged Results

Instantaneous to Time�Averaged Comparison

Examination of the �eld behavior of the conservative variables contributes greatly to

our understanding of the �ow and also provokes many questions� The time�averaged density

�eld shown in Figure ��� shows a very smooth contour �eld with a few notable features�

But� the sudden spreading between two contour lines beginning at the 	�� m axial position

provokes the question of� what is the cause In the instantaneous �eld complex vortex

combinations can be seen in the region from 	�� m through the exit plane� The complex

structures result from what Oh and Loth ���� described as �slapping� combination� The

�slapping� combination process occurs when vortices collide due to their moving at di�erent

velocities� The spreading of the contour lines is due to the vortex combination and the

associated sudden movement of high density �uid into the low speed stream� The slapping

combination process does not produce any observable e�ects in the time�averaged mass �ux

�eld of Figure ���� The axial mass �ux �gures show very few unique features� although they

do show the �rst stationary Mach waves in the high speed steam and the beginning of the

�strange wave� region where the shear layer motion begins to in�uence the shear streams

completely across the channel signi�cantly�
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The transverse mass �ux �elds provide the best insight into the shear layer growth

bulge� In the time�averaged �eld two Mach waves can be seen clearly emanating from the

splitter plate� one in each stream� The low speed Mach wave travels through the low speed

stream to the wall� re�ecting� traveling back to the shear layer and triggering a second high

speed stream Mach wave� The Mach wave pattern in the high speed stream repeats several

times along the length of the mixing channel� The strength of the vortices �positive and

negative transverse pairs� along the shear layer is not monotonic� but varies with position�

The Mach waves appear to trigger the added shear layer growth by their in�uence on the

strength of the vortices� Several other notable features are the strength of the Mach waves

that are readily identi�able in the early cross channel pro�les �X � 	��� and 	��	m� and

the peak in the �v �eld in the range of 	�� to 	��	 m position� Immediately following the

peak in the time�averaged �v �eld� the magnitude quickly diminishes and gradients rapidly

spread out� It is in this di�use region that the instantaneous contour lines suggest the

presence of shocks associated with the vortices� Some researchers such as Guirguis et al�

���� have computed the shocks associated with non�pressure balanced shear layers� The

total energy pro�les give essentially no clues to the dynamic processes that are going on in

this simulation� Viscosity in real �ows will dampen the type of phenomena observed� The

e�ects of viscosity and their in�uence on all aspects of the �ow� especially the e�ect of wall

boundary layers� are not addressed by this Euler simulation�
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Time�Averaged Comparison With Experiment

The time�averaged spreading of the shear layer into the low energy stream is shown

in Figure ���	� The gradual rise in the low energy stream is believed to be the e�ect of the

high speed stream pumping the channel �ow�
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Fluctuating Quantities

The mass �ux perturbations and the Reynolds stress are displayed in Figure �����

Figure ���� and Figure ���� The axial mass �ux �uctuations computed for both Case

I and Case II grows to a maximum level and then remains constant� The cross channel

pro�les of the mass �ux perturbations are similar in shape and magnitude trend to the

turbulence intensities of the numerical simulation of Oh and Loth ���� and the experiments

of Goebel and Dutton ����� other experimenters such as Samimy and Elliot ���� report

�ndings that show a di�erent trend in the growth of the turbulence intensities� The mass
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�ux perturbations and turbulence intensities may be a�ected by the same in�uencing factors�

One possible explanation for the di�ering observations is interaction of the shear layer with

the domain� whether it is an experimental wind tunnel wall or a computational boundary�

The axial turbulence intensity grows to a maximum and then holds a constant contour shape�

but� �v� and �u�v� both show a process of growing to a peak and then dying down� This

growth and decay process can occur several times within a normal test or computational

domain� The decay process is strongly in�uenced by the shear layer interaction with the

wall�
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The predictions for the Case II shear layer conditions follow in a consistent manner

the �ndings of the Case I simulation� Both simulations were aided by the foundation laid in

the �ndings of the single frequency simulations� The four classes of simulations� including

the three�dimensional simulation of Case I conditions� present a signi�cant quantity of data�

supporting and con�rming the �ndings of other researchers� The simulations also provide

explanations for unexplained behaviors that have been reported by experimental researchers�

A complete discussion of the signi�cant accomplishments� �nding and suggested paths for

future work is presented in the �nal chapter that follows�
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Chapter 


Conclusions

The research conducted for this thesis was a Direct Euler Simulation �DES� of the

dynamic behavior of a con�ned supersonic shear layer� The fourth�order MacCormack

��� numerical scheme and a Cartesian grid system were used to provide high�resolution

inviscid eddy simulations of the spatially evolving con�ned shear layer� The objectives

were to improve physical understanding of shear layers� develop a simple technically clean

approach that provided a high �delity foundation for simulations and establish the validity

of the simulations by direct comparisons with experimental measurements� In general� the

objectives of this research were satisfactorily accomplished� the Euler code performed well�

several signi�cant developments and �ndings were discovered and the simulation results

compared well with the experimental results� The following sections discuss the speci�c

�ndings and new developments that were achieved in this research�


�� Objectives

The research conducted as part of this thesis has been successful in reaching the

overall objective of developing a numerical simulation code capable of accurate modeling

of con�ned supersonic mixing layers� The Euler code that was developed provides e�ective

simulation of both the steady and dynamic behaviors of supersonic compressible shear

layers� For the Euler equations the MacCormack ��� numerical scheme provides resolution

of wave frequencies of up to ���			 Hz for the two�dimensional simulation and ���		 Hz

for the three�dimensional simulation� The MacCormack method provides these resolution

capabilities without loss to the dispersion relation characteristics of the waves� During code

development Von Neumann stability analysis identi�ed limitations of the MacCormack ��

� method for �ows with high Reynolds numbers� such as Martens
 Case I and Case II

conditions� Extension of the code to include viscous e�ects was also examined during the

Von Neumann analysis� Unfortunately� the simulation and wave resolution goals could not
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be achieved within the combined CFL and di�usion number limits due to computer memory

and run�time limitations�

The Euler mode operation resulted in the development of an e�ective modi�cation to

the Jameson arti�cial viscosity algorithm� a new extrapolation method that has provided

better stability than classical methods� and a new unsteady in�ow excitation method that

produces white noise disturbances� The excitation method has been e�ective in eliminating

the need for a virtual origin to achieve streamwise comparison of experimental and numerical

results in the two�dimensional simulations� The Euler mode operation has been a very

successful development tool� However� the simulations greatest contribution� a very �ne

grain de�nition of both instantaneous and time�averaged variables� could not have been

gained without the memory and speed bene�ts of massively parallel processing�

The availability of Gigabytes of memory and Giga�op class computing speeds pro�

vide the basic capability that enables the use of �ne grain grids that can resolve acoustic

waves in air up to ���			 Hz� Addition of memory capacity to an advanced computer is

a relatively very straight forward process� It is the G�op computing speed that made the

�����	� point grid of the two�dimensional simulations and the ��������	 point grid of the

three�dimensional simulation an achievable task� Finally� the matrix based syntax of High

Performance Fortran style programming language removes many hours and errors from the

code development process� This research demonstrates that practical engineering problems

can now be simulated directly with Euler methods� Continuing development in computing

speeds and numerical methods should soon provide comparable simulation capability for

viscous problems�


�� Numerical Methods

To provide the desired high�resolution of inviscid eddies it was necessary to resolve

two types of phenomena� �uid dynamic waves and acoustic waves� Resolving the shear

layer initial pro�le was the most severe �uid dynamics requirement� The method of Tam

et al� ���� for analyzing the dispersion relation preservation capability of numerical stencils

was used to show that the MacCormack ��� method needed � points per wave length to

resolve a wave fully� Using a criteria of �	 points per wave length to fully resolve a wave�

the �nal grid system for the two�dimensional Case I conditions fully resolved the inlet shear
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layer� the fundamental Kelvin�Helmholtz instability and acoustic waves of up to �� kHz�

For the two�dimensional Case II conditions the inlet shear layer and the Kelvin�Helmholtz

modes and acoustic waves up to � kHz were resolved fully� The only remaining issue was

the size of the physical domain that could be resolved and that was determined by the

grid� A common numerical issue in today
s environment has been the order of accuracy

needed to resolve waves fully� The fourth order accuracy of the MacCormack method was

judged to provide the needed spatial accuracy needed for the Euler simulations� Real �uid

e�ects of viscosity and boundary in�uences were expected to produce di�erences between

the simulation results and the experimental data that could not be simulated even by the

use of a higher order method�

The unsteady boundary conditions developed for the inlet have demonstrated white

noise behavior which does not introduce favored frequencies into the solution� The new

boundary conditions are signi�cantly simpler than the sine series frequently used by inves�

tigators� The simple form requires only the amplitude of the inlet turbulence intensities

be provided� which� for most experimental test facilities� are known moderately well� An

important new capability provided by these unsteady boundary conditions is their ability

to produce large scale behavior in its proper spatial location�

The utility of the Jameson arti�cial viscosity has been extended by a change in the

second order damping switch developed during this research� Jameson
s original method is

not e�ective in �ows which have very low pressure variation such as a pressure balanced

shear layer� The density based switch can be used as e�ectively for many problems� It

was developed by comparing switch behavior for the Riemann problem� Both switches have

identical behavior patterns� di�ering only in magnitude� The normal coe�cient tuning for

the Jameson method corrects for any needed magnitude changes� The modi�ed Jameson

method was very e�ective for this research and should be equally applicable for other �ows

with variable density�

A new approach to �nding extrapolation stencils was developed� Conventional stencils

commonly produce unbounded estimates when vortices with large gradients pass through

an extrapolated boundary� The new approach has produced stencils that rarely produce

out�of�limit estimates� Also� conventional high order extrapolations are commonly centered

at one�half to one cell position from the actual boundary� The new stencils also have
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a consistent form that is centered at the boundary cell� The new stencils also do not

require any assumptions and they are uniformly �rst order accurate� O�!x�� The �rst

order accuracy provides arti�cial damping at the boundary�


�� Simulation Physical Phenomena

Three measures were used to evaluate the ability of the Euler simulation to predict

the physical behavior of shear layers �� the ability to reproduce the FFT and power spec�

tra� �� the ability to predict the correct shear layer growth behavior and � the ability to

predict accurate time�averaged �eld variables pro�les� Overall comparison with the exper�

imental data was excellent with di�erences generally attributable to either viscous e�ects

or methods of data reduction� Accurate prediction of physical data by the simulation es�

tablishes the credibility of the simulation� Once established as valid� a simulation provides

valuable insight into the �ow
s behavior from its detailed information that goes beyond any�

thing available from the usually relatively sparse experimental data� Valuable insight into

the shear layer was obtained by comparison between the instantaneous and time�averaged

contour plots of the conservative variables and turbulence quantities�

Direct Euler simulation produced accurate dynamic modeling of the shear layer� The

FFT and power spectra compared well with the experimental data� Both the experimental

and the simulation frequencies matched those predicted from linear stability theory calcula�

tions� Comparison at two axial locations demonstrated the simulation
s correct prediction

of the peak frequency at each location and the relative changes between locations�

The shear layer growth pro�les from experiment and simulation compared well but

did show signi�cant di�erences between Case I and Case II� For Case I conditions the

numerical boundary�layer type ����� thickness compared the closest to the experimental

pro�le of Martens� The experimental shear layer thicknesses were determined graphically

from Pitot pro�les� Pitot pro�les and visual thickness produced very similar pro�les which

explained why the experimental growth compared best with the numerical boundary�layer

thickness type calculation� Viscous e�ects in the real �ow reduce the maximum velocity

gradient through the layer yielding a larger thickness than that computed from the inviscid

calculations� For Case II conditions the lower growth rate resulted in a thinner layer thick�

ness� Viscous e�ects were reduced due to slightly higher Reynolds number� The thinner



���

layer made graphical resolution more di�cult� The combination of e�ects resulted in the

Case II experimental vorticity and numerical vorticity pro�les comparing moderately well�

Overall for the two cases the growth pro�les compared very well� The di�erences between

experimental and numerical vorticity thickness were due primarily to viscous e�ects that

reduced the velocity gradient in the real �uid and di�erences in the method of determining

the pro�le thicknesses� The growth rates were normalized and compared to the results of

other researchers using Papamoschou
s normalized growth correlation� When compared on

a normalized basis the numerical results compared well with the ideal pro�le of Ragab and

Wu�

The time�averaged cross channel pro�les of the axial velocity pro�le were compared

with the experimental data with good overall comparison� Several shear layer inlet velocity

pro�les were explored early in the research to determine the in�uence of the splitter plate

wake� For the very thin shear layer being simulated no pro�le provided better overall results

than the hyperbolic tangent pro�le� The velocity pro�les throughout most of the turbulent

growth region showed the same shape and growth rates as the experimental data� Viscous

e�ects deteriorated the comparisons at the far downstream locations� Viscosity modi�ed

the shear layer by producing nearly linear velocity pro�les and boundary layer growth at

the duct walls began to interact with the shear layer pro�les�

The dominant amount of research conducted was based upon the two�dimensional

simulations� These simulations provided a sound and e�ective development tool capable

of being run relatively quickly� A typical two�dimensional simulation required about �	

hours of cpu time which took about two weeks to push through computer queues� The

three�dimensional simulation was substantially more expensive to run and was run for

about a fourth of the number of time steps as the two�dimensional simulations� The three�

dimensional simulations provided the needed con�rmation of the two�dimensional nature of

the Case I conditions� Overall� the combination of two� and three�dimensional simulations

provided a e�ective research combination�


�� Directions for Future Research

Possible directions for future research that stem from this research fall into two ar�

eas� �rst� suggested numerical research and second� suggested experimental research� The



���

suggested numerical research addresses four issues that naturally follow from this research�

These are� a new solution algorithm to permit examination of viscous e�ects� grid optimiza�

tion� fully three�dimensional mixing mechanisms in shear layers� and� shear layer growth

enhancing mechanisms� The proposed future experimental research also addresses four areas

for shear layer research� �rst� bench mark quality calibrated shear layer mapping� second�

mapped single frequency excited shear layers� third� a systematic set of compressible shear

layers beginning at fully two�dimensional �ow and progressing into fully three�dimensional

�ow� and fourth� experiments investigating shear layer growth control� The suggested ex�

perimental research builds upon Martens
 work and improves upon it as a basis of both new

knowledge and simulation validation�

The �rst area for future numerical shear layer research is the development of a fourth�

order numerical scheme that will permit simulation of high Reynolds number� viscous shear

layers� The method should be optimized for parallel application so as to achieve the great�

est possible speed� The Runga�Kutta integration method of Chyczewski ��� is suggested

only using fourth order spatial di�erencing� The second area of suggested research is grid

independence and optimization research� Grid independence research would look at how

to cluster a grid to address the requirements of a multizone problem such as the shear

layer� The zones would include the shear layer laminar growth area both axially and across

the shear layer� the turbulent growth zone� and near the channel walls for con�ned shear

layers� Grid optimization would look at issues of how to allocate a grid for such goals

achieving a uniform resolution of frequency in the solution domain� adaptive grid and grid

allocation optimization for three�dimensional simulations� The third area of research is a

systematic series of simulations moving from a shear layer �ow that is strictly two dimen�

sional through a �ow that has pronounced three�dimensional behavior� The research would

be looking to determine issues of why growth rates slow with compressibility� is the third

dimension adding an energy absorbing mechanism Investigation of shear layer growth trip�

ping mechanisms like Mach wave�shear layer interactions such as produced by a wavy wall�

This research would include both growth enhancement and growth suppression� These four

areas of numerical research present signi�cant challenges for which the high performance

computing environment at Penn State�



��

The proposed research in the numerical and experimental areas parallel each other to

provide the maximum synergism to each project and the greatest overall accomplishment�

The research areas have been simply stated but hold a multitude of paths� options and

challenges as well as establish a center of excellence in shear layer research�
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Appendix A

Von Neumann Stability Analysis

The stability limits of the MacCormack ��� �nite di�erence scheme were examined

in detail using Von Neumann analysis� The Von Neumann or Fourier analysis was applied

to the linear convection equation� the linear di�usion �heat� equation and the combined

linear convection�di�usion equation� The limiting values of the stability coe�cients were

derived for their respective ampli�cation factors� Gottlieb and Turkel ���� gave the limit

for Courant number as � � �� and the limit for the di�usion number as r � ��� The

values derived in this investigation are in agreement with Gottlieb and Turkel
s �ndings for

the individual convection and di�usion equations�

For the Convection and di�usion equations� the limits for Courant and di�usion num�

bers occur at di�erent frequencies� Consequently� the complex nature of the combined

convection�di�usion equation and the predictor�corrector application of the schemes sten�

cil lead to non�linear changes in the stability limits� The limits for the combined equation

were found by holding the Courant number at the convective limit and absorbing non�linear

e�ects in the viscous di�usion number� The resulting limits for the Courant and di�usion

number are � � �
� and r �

�

p
��

�

� � �� 	����� respectively� The historical Von Neumann

analysis of the second order MacCormack scheme by Fromm ���� added the requirement

that the cell Reynolds number be less than two� This criteria was later corrected by Hirt

���� and relaxed to Reycell � �

 �

The interrelationship between the Courant and di�usion numbers for the MacCor�

mack ��� method also yields a cell Reynolds number criteria� The derived cell Reynolds

number limit requires that Reycell be less than
����


p
��

�

�

� � �� ������ For the second order

MacCormack method� Hirt took advantage of the form of the ampli�cation factor equation

to relax the original cell Reynolds number� Hirt applied the properties of the equation of

an ellipse to relax the stability limit� The complexity of the MacCormack ��� scheme yields
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a very complicated ampli�cation factor equation that is neither simple nor constant� Con�

sequently a more relaxed limit for the cell Reynolds number could not be readily identi�ed�

Detailed analysis of the Courant� di�usion and cell Reynolds numbers are given below�

A		� Convection Equation

The spatial splitting of the MacCormack method allows each coordinate direction to

use the one�dimensional stability limits� The one�dimensional limits yield a larger time step

than may be found from the multi�dimensional limits� Accordingly the stability analysis

was carried out for one�dimensional equations�

The linear convection equation is written�

�u

�t
� �

�u

�x
� 	 �A���

The MacCormack ��� method uses a second order forward di�erence in time and a fourth

order central di�erence in space to represent the derivatives�

�u

�t
�

un
�j � unj
!t

�A���

and

�u

�x
�

unj�� � �unj�� � �unj
� � unj
�
��!x

�A��

The fourth order central di�erence in space is applied in a predictor�corrector split form�

Applying these di�erence equations to the convection equation in the predictor�corrector

sequence yields�

u�j � unj � �
!t

�!x
���unj � �unj
� � unj
�� �A���

un
�j �
�

�
�u�j � unj � �

!t

�!x
���u�j � �u�j�� � u�j���� �A���
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Von Neumann or Fourier stability analysis is linear� allowing the analysis to be carried

out for a single frequency� To illustrate the analysis� a single Fourier component of unj is

assumed to have the form�

unj � Ue�n�teIkmj�x �A���

where I �
p��� U is the amplitude coe�cient� km is themth wave number in the x direction�

n!t is the local temporal level and j!x is the local spatial position� The ampli�cation factor

G� where Un
� � GUn� is found after substituting the assumed form into the MacCormack

��� integration scheme� Using the de�nition of the Courant number� � � j�j �t
�x where � is

the maximum eigenvalue of the solution� G takes on the following form�

G � ��
�
�� � e�I z � e�� I z

�
�

��
�

�
�� � eI z � e� I z

�
�

��

����

��
�� �

�� �e�I z � eI z�

��
�� � � �e�� I z � e� I z�

��
�� �A���

where z � km!x� Equation A�� is the exponential form of the ampli�cation factor from

one time step to the next� i�e� e��n
���teIkmj�x�e�n�teIkmj�x or in a compact notation

en
�j �enj � Applying the exponential de�nitions of sine and cosine the above equation can be

reduced and simpli�ed to give

G � � �
��

��
�� � cos�z�� �� cos�z� � ��� � I

�


sin�z� �� � cos�z�� �A���

Equation A�� is identical to that derived by Gottlieb and Turkel ����� The ampli�cation

factor equation now maps the behavior of the entire real frequency range into the �nite

domain 	 � km!x � ��� The upper limit of the Courant number is de�ned by the Courant�

Friedrichs�Lewy �CFL� conditional stability condition� the limit for which the modulus of

the ampli�cation factor must be bounded to less than or equal to one� The resulting Courant

number for the convection equation is given by

� � �� �A���
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Figure A��� Ampli�cation Factor of the Convection Equation� � � ��� and � � ����

The formal requirement for stability can be expressed as jGj � �� The stability criteria is

shown in Figure A�� for two Courant numbers� � � ��� the maximum limit and � � 	����

the Courant number used throughout the computations of this research� The ampli�cation

factor is shown graphically in both polar and Cartesian coordinates�

A		� Di�usion Equation

Stability analysis of di�usion terms was carried out using the di�usion or heat equation�

Use of the di�usion equation simpli�ed investigation of various methods of implementing

the second order derivatives� None of these methods gave improved stability over the basic

approach suggested by Gottlieb and Turkel �����

The di�usion equation was written in hyperbolic form�

�u

�t
� �

�x

�
�
�u

�x

	
� 	 �A��	�

The form of Equation A��	 emulates the way the di�usion terms were implemented in the

software and is also the form of implementation suggested by Gottlieb and Turkel� The inner

derivative uses a �rst order one sided stencil� The outer derivative uses the MacCormack

��� fourth order stencil� The di�erencing of each �rst order one sided stencil is applied



���

in the opposite direction to the fourth order stencil to which it is being applied� As an

example� backward di�erencing in the �rst order stencil was applied

Ev � �
unj � unj��

!x
�A����

to the forward di�erenced forth order stencil�

u�j � unj �
!t

�!x
���Ev

n
j � �Ev

n
j
� �Ev

n
j
�� �A����

After applying the MacCormack scheme� the Fourier solution form of Equation A�� and the

di�usion number de�nition r � � �t
��x�� were introduced� The resulting ampli�cation factor

has the form

G � �� ��	

��
r �

�� �e�i z � ei z�

��
r � � �e�� i z � e� i z�

��
r �

��

��
r� �

��� �e�i z � ei z�

��
r� �

�� �e�� i z � e� i z�

��
r� � � �e�� i z � e� i z�

��
r� �A���

Applying the exponential de�nitions of sine and cosine� the above equation can be reduced

and simpli�ed to give

G � � ���

�
r �

� cos�z�


r � cos�� z�

�
r �

��

��
r� � � cos�z�

��
r� �

� cos�� z�

�
r� � � cos� z�

�
r� �A����

The formal stability requirement is expressed as jGj � �� The ampli�cation factor is shown

graphically in Cartesian coordinates in Figure A��� The symmetric behavior about � allows

the upper limit of the di�usion number� r � to be easily found� For the di�usion equation

the ampli�cation factor is within stability limits when the di�usion number is

r � �
!t

�!x��
� 

�
� �A����
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A di�usion number limit of �
� was also reported by Gottlieb and Turkel ����� As will be

seen later� combining the convection and di�usion terms does not necessarily lead to the

same limits for both these stability coe�cients� The cause for the di�erences is based

on the di�erent frequencies at which these limits occur and non�linear e�ects due to the

predictor�corrector application�

A		� Convection�Di�usion Equation

The combined convection and di�usion equation written in hyperbolic form is given

as

�u

�t
� �

�u

�x
� �

�x

�
�
�u

�x

	
� 	 �A����

The MacCormack ��� scheme was applied in the same manner as for the convection and

di�usion equations� Inserting the Fourier solution form of Equation A�� yields the following

ampli�cation factor G�

G � � �
�� �e�i z � ei z��

��
� � �e�� i z � e� i z��

��
� ����� �

�� �e�i z � ei z���

��
�



��	

� �e�� i z � e� i z���

��
� ��	 r �

�� �e�i z � ei z� r

��
� � �e�� i z � e� i z� r

��
�

�	� �e�i z � ei z�� r

��
�

�� �e�� i z � e� i z�� r

��
� � �e�� i z � e� i z�� r

��
� �� r� �

��� �e�i z � ei z� r�

��
�

�� �e�� i z � e� i z� r�

��
� � �e�� i z � e� i z� r�

��
�A����

Converting to a trigonometric basis Equation A��� can be reduced and simpli�ed to give

G � �� ����

��
� � r

�
�

�� r�

��
�

���� cos�z�

�
�

� r cos�z�


� � r� cos�z�

��

���� cos�� z�

�
� r cos�� z�

�
�

� r� cos�� z�

�
� � r� cos� z�

�

��


I � sin�z� �

�	�

�
I � r sin�z� �

�

�
I � sin�� z�

���

�
I � r sin�� z� �

�

�
I � r sin� z� �A����

The interrelationship of the Courant and di�usion numbers was determined using the sta�

bility limit for the modulus of the ampli�cation factor� jGj� � �� The solution root that

has a positive real value over the range of � from zero to one is given by

r �
� �

p
� � �����

��
�A����

The combined convection�di�usion equation allows the di�usion number to rise above

its di�usion equation limit� The di�usion number correctly approaches the di�usion equa�

tion limit as � goes to zero� That minimum di�usion number has a value of �
� or numerically

	���	� The limit relationship between r and � is shown in Figure A�� The Courant num�

ber was held at its convection limit to give proper handing of the convective terms in the

Euler�Navier Stokes equations� At the Courant number of �
� the di�usion number limit be�

comes r �
�


p
��

�

� � with an approximate numerical value of � 	���� Two �gures� Figure A��

and Figure A��� present the ampli�cation factor for two Courant numbers and several di�u�

sion numbers� Researchers Kennedy and Carpenter �	� have investigated several high order

numerical methods including a series of extended MacCormack schemes� They found limits

for the Courant and di�usion numbers to be 	��� and 	���� very close to those found here�

However� as they note in their paper� the ��� schemes that they investigated are di�erent
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from those proposed by Gottlieb and Turkel� The complex nature of the ampli�cation func�

tion is readily seen in both �gures� Because of this complex behavior� the equation form

could not be used to relax the cell Reynolds number limit as was done by Hirt�

The practical application of Equation A��� is to solve for the maximum allowable time

step� The time�step equation takes the form

t �
�!x�

����� � ��!x��
�A��	�

The time�step equation can be recast in terms of the cell Reynolds number to give

� �
�
�Reycell

���Rey�cell�
�A����

Equation A��� shows that the maximum allowable cell Reynolds number that gives a stable

solution is controlled by the Courant number� Expressing the cell Reynolds number in terms

of the Courant number give

Reycell �
� �

p
� � ����

��
�A����

It can be shown easily that the cell Reynolds number has an upper limit of Reycell �
����


p
��

�

�

� � �� ����� at a Courant number of �
� � This is an even more severe limit than the
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apparent limit of Reycell � � that appears in Equation A���� The practical consequence of

this severe cell Reynolds limit is that� for viscous �ows� this method is only useful at very

low Reynolds numbers�
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